
Dissertationes Forestales 22

Radiative transfer, interception and scattering in coniferous
forests: models and applications for production ecology and

remote sensing

Sampo Smolander
Department of Mathematics and Statistics

Faculty of Science
University of Helsinki

Academic dissertation

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium B123,

Exactum (Gustaf Hällströmin katu 2b), on June 16th, 2006, at 12 o’clock.



2

Radiative transfer, interception and scattering in coniferous forests: models and applications
for production ecology and remote sensing

Author: Sampo Smolander

Dissertationes Forestales 22

Supervisors: Docent Pauline Stenberg Professor Elja Arjas
Department of Forest Ecology Department of Mathematics and Statistics
University of Helsinki University of Helsinki
Finland Finland

Pre-examiners: Professor Yuri Knyazikhin Professor Olevi Kull
Department of Geography Institute of Botany and Ecology
Boston University University of Tartu
USA Estonia

Opponent: Professor Ranga B. Myneni
Department of Geography
Boston University
USA

Cover drawing by Petri Hiltunen

ISSN 1795-7389
ISBN-13: 978-951-651-132-3 (PDF)
ISBN-10: 951-651-132-5 (PDF)

Paper copy printed:
Yliopistopaino
Helsinki 2006

Publishers:
The Finnish Society of Forest Science
Finnish Forest Research Institute
Faculty of Agriculture and Forestry of the University of Helsinki
Faculty of Forestry of the University of Joensuu

Editorial Office:
The Finnish Society of Forest Science
Unioninkatu 40A, 00170 Helsinki, Finland
http://www.metla.fi/dissertationes/



3

Smolander, Sampo 2006. Radiative transfer, interception and scattering in coniferous forests:
models and applications for production ecology and remote sensing. University of Helsinki.
Department of Mathematics and Statistics.

ABSTRACT
This work develops methods to account for shoot structure in models of coniferous canopy
radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects
the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen.
The clumping of needles in the shoot volume also causes a notable amount of multiple scat-
tering of light within coniferous shoots. The effect of shoot structure on light interception is
treated in the context of canopy level photosynthesis and resource use models, and the phe-
nomenon of within-shoot multiple scattering in the context of physical canopy reflectance
models for remote sensing purposes.

Light interception. A method for estimating the amount of PAR (Photosynthetically Ac-
tive Radiation) intercepted by a conifer shoot is presented. The method combines modelling
of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot
locations to measure canopy gap fraction, and geometrical measurements of shoot orienta-
tion and structure. Data on light availability, shoot and needle structure and nitrogen content
has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and
Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside
canopy so that more shaded shoots have better light interception efficiency. Light intercep-
tion efficiency of shoots varied about two-fold per needle area, about four-fold per needle
dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control
stands of Norway spruce indicated that light interception efficiency is not greatly affected by
fertilization.

Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light
between the needles of the shoot. Using geometric models of shoots, multiple scattering
was studied by photon tracing simulations. Based on simulation results, the dependence of
the scattering coefficient of shoot from the scattering coefficient of needles is shown to fol-
low a simple one-parameter model. The single parameter, termed the recollision probability,
describes the level of clumping of the needles in the shoot, is wavelength independent, and
can be connected to previously used clumping indices. By using the recollision probability
to correct for the within-shoot multiple scattering, canopy radiative transfer models which
have used leaves as basic elements can use shoots as basic elements, and thus be applied for
coniferous forests. Preliminary testing of this approach seems to explain, at least partially,
why coniferous forests appear darker than broadleaved forests in satellite data.

Keywords: shoot structure, light interception, leaf area index, forest reflectance model, mul-
tiple scattering, photon recollision probability
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1 INTRODUCTION
Mathematical modelling of radiative transfer and photosynthesis in plant canopies is gen-
erally seen to date back to the seminal paper by Monsi and Saeki (1953). Solar radiation
provides energy for plant photosynthesis, and the energy and carbon derived from photosyn-
thesis, the primary production, drive most of the biological processes in Earth’s biosphere.
Canopy structure determines the part of the available light that plants are able to absorb.
Other factors, such as water and nutrient conditions, may limit the capacity with which
plants are able to utilize absorbed light in photosynthesis, but the description of the amount
of absorbed light is of prime importance in studies of canopy photosynthesis and production
ecology.

Since the light response of leaf photosynthesis is non-linear, and generally varies in
shape in different parts of a canopy (Larcher 2003), knowing only the total amount of light
absorbed by a canopy is sufficient only for rather approximate estimates of canopy photo-
synthesis (Friend 2001). If we assume canopy geometrical structure and incoming light to
be known, we can, in principle at least, calculate the distribution of absorbed light in the
canopy. If we also assume the photosynthetic light response in different parts of the canopy
as known, using this and the distribution of light, we can calculate canopy photosynthesis.
In practice all of the three problems (measuring and modelling canopy structure, calculating
canopy radiation regime when structure is known, and measuring and modelling the distri-
bution of photosynthetic capacity in different parts of a canopy) are nontrivial, and empirical
and theoretical research of these problems has proceeded iteratively.

Canopy structure, together with the properties of the underlying ground, also determines
how vegetation reflects radiation. Understanding the process of radiation reflection, in dif-
ferent wavelengths, from vegetation forms physical basis for the interpretation of vegetation
properties from satellite images and other remotely sensed signals (such as satellite radars
and lidar). Since in the PAR1-wavelengths reflectance and transmittance of leaves and nee-
dles is low2, the models of radiative transfer in plant canopies that have been developed
for the purposes of light absorption and photosynthesis usually neglect light scattering and
concentrate only on the penetration of direct sunlight and skylight into the canopy. In the
radiative transfer models for canopy reflectance, on the other hand, scattered radiation is
the main interest and accurate values for leaf or needle optical properties in different wave-
lengths are important input data.

In their current state of development, canopy reflectance models assume canopy struc-
ture and element optical properties to be known, and aim to solve the radiation field inside
canopy (e.g. Knyazikhin et al. 1998b, 1999, Gobron et al. 1999, Kuusk and Nilson 2000).
The upward radiation leaving the top of the canopy constitutes then the canopy reflectance.
The estimation of vegetation properties from remote sensing data is then based on either
comparing the observed signal to a database of previously computed reflectances for a wide
selection of different canopies, and choosing the closest matches (Knyazikhin et al. 1998b,
1999, Gobron et al. 1999), or iteratively optimizing model input parameters to match the
observed signal as closely as possible (Kuusk and Nilson 2000).

Several aspects of the structure of coniferous trees distinguish them from broadleaved
plants. The leaves of conifers are needles in shape, not planar like those of broadleaved
plants. The needles of conifers are closely grouped together as shoots. While there is shoot

1Photosynthetically Active Radiation, 400-700 nm
2Generally less than 10%, except for a peak in green that may reach over 20% in a narrow waveband

(Walter-Shea and Norman 1991, Middleton et al. 1997)
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level grouping also in broadleaved canopies (e.g. Kull and Tulva 2002), the phenomenon is
much more pronounced in conifers (Oker-Blom 1986, Oker-Blom et al. 1991, Nilson 1992).
Also higher level grouping, shoots in branches and branches in tree crowns, is usually more
pronounced in conifers than in broadleaved trees.

The mathematical description of radiative transfer in an interacting medium has tradi-
tionally been based on the so called turbid medium assumption (Chandrasekhar 1950, Ross
1981). This means that there should be a length scale in which the locations of absorbing
and scattering elements (leaves) in the medium (canopy) are amenable to be described using
the concept of statistical density distribution. This is indeed the case in the fields where
the radiative transfer theory has been developed (astrophysics, atmospheric physics, nuclear
physics). The assumption also holds true relatively well to facilitate describing the radiative
regimes of broadleaved canopies (Ross 1981, Myneni et al. 1989).

However, if there is no such length scale, the concept of statistical density distribution is
not good for describing the properties of the medium (Mandelbrot 1983). The main motiva-
tion of this work has been the notification that this is the case in coniferous canopies. The
length scale of the size of the basic elements, needles, is in the order of centimeters. The
density distribution of needles in the canopy also varies greatly at the essentially same length
scale; needle density is high inside a shoot volume, and then within a distance of a couple of
centimeters, outside of a shoot, it can be zero.

The first hierarchy level of grouping is the grouping (or clumping) of needles into shoots.
In this work, the effect of shoot scale grouping and the variations in shoot structure on the
processes of light absorption (papers I, II and III) and scattering (papers IV and V) are
studied. The effect of grouping in higher hierarchy levels (branches, whorls, tree crowns) is
outside the scope of this work and remains subject to further studies.

In paper I, a method for estimating light interception by conifer shoots is described.
Shoot structure alone can introduce many-fold variation in the efficiency of light intercep-
tion by unit needle surface or unit needle dry mass (papers II and III), so it clearly needs to
be included in accurate models of canopy light absorption, photosynthesis and resource use.
Papers II and III present empirical work describing the variation in shoot structure and phys-
iology in relation to shoot light interception. Theories and models of canopy photosynthesis
and resource use should confirm to this kind of empirical observations.

In paper IV, the phenomenon of multiple scattering of light within a coniferous shoot
is described using a detailed simulation model. Based on the results of the simulations,
a simple algebraic formula is presented that should describe the amount of within-shoot
multiple scattering to a very good approximation, and could be used as an easy way to
correct for the within-shoot scattering in the traditional leaf-based canopy radiative transfer
models. The effect of including within-shoot multiple scattering into canopy level radiative
transfer models is described in papers IV and V, albeit using only simple model canopies
with homogeneous higher level structure. The effect is found to be notable, and in the
right direction, to explain the observed higher absorption and lower reflectance of coniferous
forests, when compared to broadleaved forests (Williams 1991, Zhang et al. 2002, Roberts
et al. 2004).
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2 RADIATIVE TRANSFER
Radiative transfer theory is the study of radiation inside a medium which absorbs, emits and
scatters radiation. Historically, it was developed in the early 1900’s by astrophysicists and
meteorologists studying electromagnetic radiation in planetary, stellar and terrestrial atmo-
spheres (Simpson 1928, Chandrasekhar 1950, Sobolev 1970, Thomas and Stamnes 1999).
From the mid 1900’s the theory has also been applied and developed by physicists and en-
gineers studying neutron radiation in nuclear reactors (Case and Zweifel 1967, Bell and
Glasstone 1970). Transfer theory is also known by the name transport theory.

A more complete description of interaction of radiation with matter would include the
Maxwell equations and the wave nature of photons (Ishimaru 1999), or also quantum me-
chanical behavior of particles. However, in the areas where radiative transfer theory is ap-
plied (e.g. atmospheric physics, nuclear reactor theory, radiative transfer in plant canopies),
wave nature, polarization, etc. are usually not important and photons, or neutrons, can be
treated as point particles.

The theory of radiative transfer inside vegetative canopies started with the interest in
modelling canopy photosynthesis (Ross 1981, Hirose 2005), and for that purpose radiation
scattering is relatively unimportant and can be mostly ignored. The advent of satellite imag-
ing and remote sensing (Campbell 1996) has made the scattering of photons by vegetation
an important area of study.

The radiative transfer equation describes the propagation and scattering of point parti-
cles inside an absorbing and scattering medium (Chandrasekhar 1950, Bell and Glasstone
1970, Ross 1981, Myneni et al. 1989, Myneni and Ross 1991). It is based on the following
assumptions: (i) that there is a sufficient number of particles so that mean particle flux, as
described by the radiation field, is a sufficient description and statistical fluctuations can be
ignored, (ii) the particles do not interact with each other, and do not alter the properties of
the medium, and (iii) the medium can be described as a continuous turbid medium.

2.1 Basic definitions

A position in space is described by vector r = (x, y, z). A direction is described by unit
vector Ω. A direction can also be specified in polar coordinates by polar angle θ and az-
imuth angle φ. In this case Ω = (sin θ cos φ, sin θ sin φ, cos θ). Particle angular density
N(r,Ω, E, t) gives the density of particles in point r propagating to direction Ω with energy
E at time t. Thus,

N(r,Ω, E, t) dV dΩ dE (1)

is the number of particles in the volume element dV about r, having directions within solid
angle dΩ about Ω, energies within dE about E, at time t. If polar coordinates are used for
directions, the differential element of solid angle dΩ = sin θ dθ dφ.

Particle angular flux I is the particle angular density N multiplied by the particle velocity
v. Another view of the particle flux is that

I(r,Ω, E, t) dAdΩ dE dt (2)

gives the number of particles having directions within dΩ about Ω and energies within
dE about E that cross area dA, being perpendicular to Ω, in time interval dt about t. In
photometric terminology (Bell and Rose 1981), angular photon flux is also called radiance.
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Radiation traversing a medium will be weakened by its interaction with matter. The
total interaction cross section σ is the probability that a particle will undergo an interaction,
per distance traversed, for differentially small distances. Using differential notation, flux I
becomes I + dI after traversing a distance ds, and

dI = −σI ds. (3)

σ can depend on location and also on the direction of incoming radiation. A part of the
radiation interacting with the medium is absorbed, this is given by the absorption cross
section σa. Another part is scattered to other directions, this is given by the scattering cross
section σs. These two constitute the total interaction cross section, σ = σa + σs. The
ratio σs/σ gives the probability of scattering for one interaction, and is called the scattering
coefficient.3 The scattering coefficient is here denoted by ω. A scattered particle shall appear
in a new direction. This is described by a probability distribution f(r,Ω′ → Ω), giving
the probability density that a particle coming from Ω′ and scattered at r shall continue to
direction Ω. Naturally, ∫

4π
f(r,Ω′→Ω) dΩ = 1 (4)

since f is a probability distribution. Here integration over all directions (all vectors Ω on
the surface of the unit sphere) is denoted by 4π. The directional distribution f multiplied
by the scattering coefficient ω is called the scattering phase function. Some authors (e.g.
Chandrasekhar 1950) prefer to normalize f to 4π rather than to 1. This has the advantage
that f ≡ 1 for uniform scatterers, and the disadvantage that a term 1

4π
has to be included in

the scattering term in the equations.
The term σ(r,Ω′) ω(r,Ω′) f(r,Ω′→Ω) is written together as σs(r,Ω

′→Ω) for brevity.
In this form it is called the differential scattering cross section. In the case of f normalized
to 4π, the differential scattering cross section gives the probability per length traversed and
per solid angle, for differentially small length and solid angle, that a particle traversing a unit
length to direction Ω′ shall be scattered to direction Ω.

2.2 The radiative transfer equation

The general form of the radiative transfer equation is

1

v

∂I

∂t
= −Ω · ∇I − σI +

∫ ∞

0

∫
4π

σωfI dΩ′ dE ′ + Q. (5)

Here v denotes particle velocity, I(r,Ω, E, t) is the flux of particles in point r to direction
Ω with energy E at time t. The total interaction cross section σ(r,Ω, E) describes the rate
at which particles in point r traversing to direction Ω are removed (absorbed or scattered)
from the beam. The scattering coefficient ω(r,Ω, E) describes the proportion of interactions
that lead to scattering, and f(r,Ω′→Ω, E) describes the probability density that a scattered
particle will continue to direction Ω. The term Q(r,Ω, E, t) describes particle source. The
del operator ∇ operates only on the spatial coordinates r. Boundary conditions can be
included in the terms for source, interaction and scattering, or given separately.

3This probabilistic interpretation is valid here with photons, as collisions do not produce new particles. A
more general interpretation is used with neutron scattering, when the production of new particles is possible.
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2.3 Time-independent form
In photon-vegetation interactions the particle velocity, the speed of light, is so great that
the radiation field can usually (with some exceptions, like lidar studies, e.g. Kotchenova
et al. 2003) be assumed to be in a steady state, that is ∂

∂t
I = 0. The collisions can be

assumed not to change photon energies, so the steady state solution can be constructed for
different photon energies independently. Additionally, instead of energy, photons are usually
characterized by their wavelength. Photon wavelength λ is completely determined by photon
energy by E = hc/λ, where h is the Planck’s constant and c is the speed of light. The time-
independent form of the radiative transfer equation is

Ω · ∇Iλ(r,Ω) = −σ(r,Ω)Iλ(r,Ω) +
∫
4π

σsλ(r,Ω
′→Ω) dΩ′ + Qλ(r,Ω). (6)

When defining the boundary conditions, a canopy is usually considered infinite in horizontal
directions. The assumption that σ does not depend on wavelength is well justified in plant
canopies.

2.4 Limitations of the turbid medium assumption
When the traditional radiative transfer theory, as developed for astrophysical, atmospheric
and nuclear engineering applications, is applied for plant canopies, three complications ap-
pear: anisotropy, spatial inhomogeneity and the large size of the scattering elements.

A good description of plant canopy anisotropy and inhomogeneity is given by Ross
(1981). In many areas of application, the properties of the scattering medium are isotropic,
i.e. the scattering properties of the medium in a point do not depend on the direction. How-
ever, numerical methods for anisotropic scattering also have been developed e.g. in nuclear
reactor theory (Bell and Glasstone 1970).

It has been common to assume plant canopies to be horizontally homogeneous. For ex-
ample the review by Myneni et al. (1989) mainly describes computational methods based on
this assumption. At that time available computer resources may indeed have limited feasible
numerical methods to horizontally homogeneous cases. Later there has been numerical work
also covering horizontally inhomogeneous canopies (Knyazikhin et al. 1997, 1998a,b).

The first two of the above mentioned complications, anisotropy and inhomogeneity, are
not inherent limitations in the turbid medium approach, they just have somewhat limited the
direct applicability of numerical methods developed in other fields of radiative transfer.

A more serious limitation of the turbid medium approach is encountered with the large
size of the scattering elements in plant canopies. In atmospheric and nuclear reactor appli-
cations the scattering elements are usually single atoms or molecules. In these cases the ele-
ment size is many orders of magnitude smaller than the length scale in which the properties
of the medium change. This kind of medium is well amenable to the statistical description.
In plant canopies the element (leaf, needle) size is in the order of centimeters, and the density
and distribution of these elements may change along distances of decimeters or meters. This
phenomenon is especially pronounced in conifers, where needles are grouped together as
shoots. The geometry of conifers is further discussed in section 3.2. In conifers, the element
density varies from high, inside shoot volume, to zero, outside shoot volume, at essentially
the same length scale as the element (needle) size. In this case, there is no length scale in
which the medium could be considered continuous enough to warrant the use of the turbid
medium approximation. Work based on this observation is further discussed in section 5 and
in papers IV and V.
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2.5 Photon tracing

The method of photon tracing involves generating photons at the light sources and following
their paths as they interact with the elements of the scene (Glassner 1995, Jensen 2001).
Photon tracing4 falls under a family of simulation methods called Monte Carlo ray tracing
(Disney et al. 2000).

In photon tracing, photons are generated to enter the scene from a specified directional
distribution. Their paths are traced until they escape out of the scene, or until an interaction
happens. The outcome of an interaction may be absorption, reflection or transmission, and
for a particular interaction the outcome is randomly sampled from the respective probabili-
ties. In the case of scattering (i.e. reflection and transmission), the new direction is sampled
from a directional distribution describing the scattering properties of the target object, and
the path is traced further. The scene can consist of solid objects, as was the case with the
shoot level simulation in paper IV. In this case the point of first interaction along a photon
path is solved by geometric means. The scene can also include objects filled with random
turbid medium. In this case the length of the path penetrating into the medium before first
collision is sampled from the exponential distribution. This method was used in the canopy
level simulations in papers IV and V.

Since the first publication on the Monte Carlo methods (Metropolis and Ulam 1949),
they have developed into a versatile tool in a large variety of applications. An interesting
piece of history, as described by Metropolis (1987), is that the Monte Carlo methods were
first developed and applied specifically for problems in radiative transfer theory.

3 CANOPY ARCHITECTURE AND RADIATION
REGIME

The photosynthetic production of a vegetated area is determined by the total amount of
foliage, and its photosynthetic performance. If we assume the spatial distribution of the pa-
rameters that govern photosynthesis locally to be known, calculating the whole vegetation
stand photosynthetic production is reduced to the problem of describing the distribution of
light on the photosynthetic surfaces (e.g. Ross 1981, Oker-Blom 1986, Oker-Blom et al.
1991, Gutschick 1991). On the other hand, if we assume that the radiation regime is known,
we can ask the question which distribution of photosynthetic resources over different parts of
foliage would maximize photosynthetic production (e.g. Kull 2002, and references therein).
The matter is further complicated by that fact that plants can alter the total amount of foliage
in a canopy, and they can alter the radiation penetration to the lower parts of the canopy
by controlling the structure of the higher parts of the canopy (e.g. Anten et al. 1995b, Sten-
berg 1996b). Also, competition between individuals seems to add the condition that the
optimal solution for maximal photosynthetic production is not evolutionary stable strategy
(Schieving and Poorter 1999, Anten and Hirose 2001).

4Some sources (such as Disney et al. 2000) use the term forward ray tracing instead of photon tracing.
However, Foley et al. (1990) point out that that term may be misleading, since usually ray tracing involves
tracing the paths of photons from camera to the light sources. Thus the method of tracing photon paths from
light sources to camera has also been called backward ray tracing, while it is also know to some as forward ray
tracing. To avoid this confusion, I follow the terminology of Glassner (1995) and Jensen (2001) and use the
term photon tracing here.
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3.1 Development of canopy radiation regime models
The now classical mathematical model of canopy light regime and photosynthesis was pub-
lished by Monsi and Saeki (1953). They measured light attenuation, under overcast sky,
in herbaceus plant communities, and found that it was well described by the Beer’s law,
equation:

I(L) = I0e
−kL, (7)

where I is the photosynthetic photon flux density (PPFD) on a horizontal plane, I0 is the
PPFD at the top of canopy, L is the leaf area index (LAI) cumulated from the top of the
canopy and k is the attenuation coefficient per unit cumulated leaf area. Monsi and Saeki
(1953) noted that for randomly located horizontal leaves k should be equal to 1. If leaf
distribution is more even than random, it increases k, and if leaves are clumped together, it
decreases k. The amount of light that leaves in a certain infinitesimal layer receive, is given
by the derivative of Eq. 7.

The light response A(I) of photosynthetic carbon assimilation was described by a Micha-
elis-Menten (or rectangular hyperbola) type equation (Michaelis and Menten 1913),

A(I) =
bI

1 + aI
− r, (8)

where a and b are some parameters describing photosynthesis light response (b gives the
initial slope for small values of I , b/a gives the saturated value for large I) and r is the
respiration rate. Combining 8 and the derivative of 7, and integrating from 0 to maximum
LAI (Lmax), Monsi and Saeki got productivity P as

P =
∫ Lmax

0

(
bkI0e

−kL

1 + akI0e−kL
− r

)
dL

=
b

ka
ln

(
1 + akI0

1 + akI0e−kLmax

)
− rLmax. (9)

An important observation form Eq. 9 is that under some fixed light conditions, there will be
some Lmax for which the productivity is maximized.

This model of Monsi and Saeki (1953) is perhaps the simplest canopy photosynthesis
model that one can think of. For example, the light intercepted by leaves in layer L + ∆L
is assumed to be distributed evenly on the leaf surfaces. This assumption is clearly non-
realistic. In reality the light available at a certain depth in a canopy consists of an interplay
of spots of sunlight, shadow and penumbra. Leaf orientation, as it usually departs from the
horizontal, also effects the irradiance on the surface of a leaf. Additionally, all leaves of
the canopy are assumed to have the same photosynthetic capacity, and also this assumption
contradicts general empirical knowledge (e.g. Larcher 2003).

The main determinant of the leaf photosynthetic capacity is the leaf nitrogen content5

(Mooney and Gulmon 1979, Field and Mooney 1986, Evans 1989, Evans and Seeman 1989,
Hirosaka and Terashima 1996). Usually, leaves developed in low-light conditions are thin-
ner, and have a smaller amount of photosynthetic apparatus and nitrogen per unit area.
Leaves developed in full sunlight are thicker, and have more of photosynthetic apparatus
and nitrogen per unit area. Studies on leaf level light acclimation have shown both light
saturated photosynthesis rates and respiration rates to be higher in sun leaves than in shade

5Leaf nitrogen content = amount of nitrogen per leaf area
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Figure 1: A schematic illustration of the typical photosynthesis light response curves of
sun and shadow leaves. A sun leaf (higher curve) has higher photosynthesis when there
is abundant light, but at low light levels the higher respiration cost causes the sun leaf to
photosynthetize less than a shadow leaf (lower curve). The curves follow the form of a
widely used model for photosynthesis light response, the non-rectangular hyperbola

P =
φI + Pmax −

√
(φI + Pmax)2 − 4θφIPmax

2θ
− r

(Thornley 1976). Here, P is photosynthesis, I is light, Pmax is the maximum level of
photosynthesis, φ is the initial slope of the photosynthesis light response, and θ controls the
convexity of the curvature between the initial slope and the final saturation.

leaves (e.g. Hollinger 1989, Marek et al. 1989, Ellsworth and Reich 1993, Bassow and Baz-
zaz 1998). This difference in the photosynthetic light response curves of sun and shade
leaves is illustrated in Fig. 1.

The seminal work of Monsi and Saeki has resulted in theories being developed on the op-
timal distribution of nitrogen in plant canopies, and in experimental work testing the theories.
Mooney and Gulmon (1979) proposed a framework of cost-benefit analysis in plant resource
use studies. The idea is that sequestering nitrogen (and also other nutrients, but nitrogen is
the most important one) and synthesizing proteins for building the photosynthetic apparatus
consumes energy, and the energy gain from photosynthesis by this apparatus should exceed
the energy invested in its construction.

Field (1983) formulated leaf nitrogen allocation as a variational problem. The opti-
mal distribution of nitrogen among the leaves would be such that no redistribution could
increase productivity. Charles-Edwards et al. (1987) and Farquhar (1989) made the as-
sumption that photosynthetic capacity is linearly related to nitrogen content and thus pro-
posed that the optimal nitrogen distribution would be linearly related to intercepted light.
Leaf nitrogen distribution has been studied extensively (e.g. Field 1983, DeJong and Doyle
1985, Field and Mooney 1986, Hirose and Werger 1987a,b, Evans 1989, Hirose et al. 1989,
Hollinger 1989, Pons et al. 1990, Leuning et al. 1991, Werger and Hirose 1991, Schieving
et al. 1992, Ellsworth and Reich 1993, Evans 1993, Kull and Niinemets 1993, Anten et al.
1995a, Hollinger 1996, Dang et al. 1997, Bond et al. 1999, Wilson et al. 2000, Meir et al.
2002, Han et al. 2004) and in nearly all cases nitrogen per unit leaf area varies in parallel
with light availability. However, it does not decrease sharply enough to remain proportional
to light at lower levels of canopies (Kull 2002, Anten 2005). A more detailed theory of
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nitrogen allocation should also take into account the partitioning of leaf nitrogen into differ-
ent components of the photosynthetic machinery (e.g. Laisk et al. 2005, Eichelmann et al.
2005).

3.2 Structural properties of conifers
The geometrical structure of trees has been studied from many viewpoints, including biome-
chanics (e.g. Niklas 1992), water relations (e.g. Kramer 1995, Kirkham 2005) and light
conditions (e.g. Ross 1981, Myneni and Ross 1991). For the study of radiative transfer in
vegetative canopies, the main interest lies in the spatial and angular distribution of phytoele-
ments (plant parts: leaves, branches, stems).

Coniferous trees have a geometrical structure that is hierarchical in several levels (e.g.
Oker-Blom 1986, Oker-Blom et al. 1991, Nilson 1992, Stenberg et al. 1995b, Bégin and
Filion 1999). The space filled by the foliage and the branches of a tree is called a tree
crown. It is quite normal for coniferous tree species to have rather distinct tree crowns
(Gelderen and Van Hoey Smith 1996). This is especially pronounced in species which have
conical crown shapes, such as spruces (genera Picea) and firs (genera Abies), and somewhat
less pronounced in species which have more ellipsoidal crown shape, such as pines (genera
Pinus). In general, the division of the space of a forest stand into tree crowns filled with
foliage, and the empty space between the tree crowns, is important in determining the light
conditions of the stand (Anderson 1966, Oker-Blom et al. 1991).

Within a crown, the foliage is divided into branches. Usually most first order lateral
branches (lateral branches extending from the main stem) developed in a certain year start
growth from the trunk at the same height. This collection of branches attached to tree trunk
at the same height is called a whorl (Zimmerman and Brown 1971).

In the context of the conifer species that are treated in this work (Abies amabilis (Dougl.)
Forbes), Picea abies (L.) Karst., and Pinus sylvestris L.), the basic unit of one year’s growth
is called a shoot. In these species, there usually is no branching within a single shoot, but
branching takes place when new shoots grow from the buds at the end of previous year’s
shoots. However, it is also possible that some buds form along the length of a shoot, and
new shoots can start to grow from these. The buds can even stay dormant for several years
before a new shoot starts to elongate from them (Ishii and Ford 2001). The grouping of
shoots into spatially distinct branches can be very pronounced, with empty spaces between
the branch volumes, as in many spruces. Or the spaces of individual branches can join
together to form a rather continuous crown, as is many pines (Gelderen and Van Hoey Smith
1996).

Perhaps the most distinct structural property of conifers is the aggregation of narrow
needles into shoots (e.g. Norman and Jarvis 1974, Leverenz and Jarvis 1980, Carter and
Smith 1985, Smith and Carter 1988). Because of the mutual shading of the needles in shoots,
a certain amount of needle area, when clumped together into shoots, intercepts less light
than would be the case when an equal amount of leaf area were independently distributed
in canopy space6. Models of coniferous canopy light interception have thus used shoots as
the basic elements, and described the canopy structure in terms of the spatial and angular
distribution of shoots (Oker-Blom and Kellomäki 1983, Stenberg et al. 1993, Cescatti 1998,
Nilson et al. 1999). This requires specifying how shoot silhouette areas, and thus the shoot
level attenuation coefficient, depend on the amount of needle area in the shoot and the shoot

6That is, following a spatial Poisson process with constant intensity.
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structure.
Norman and Jarvis (1974) may have been the first to measure shoot silhouette areas.

They also sampled comprehensively from the directions of hemisphere. They called it the
attached needle area, projected at an angle. Later, Carter and Smith (1985) defined the
silhouette to total area ratio (STAR) as the silhouette area of the shoot divided by the total
surface area of needles in the shoot. Since the shoot silhouette area varies as a function
of the view direction, so should the STAR, but apparently Carter and Smith (1985) used
only one view direction, directly from above the dorsal (“upper”) side of the shoot, in their
measurements. Measurement from this direction, but normalized to projected rather than
total needle area, was later termed Rmax by Leverenz and Hinckley (1990) and SPARmax

by Stenberg et al. (1995a), but as noted in paper II it usually does not represent the true
maximum.

Next, Oker-Blom and Smolander (1988) explicitly noted the dependence of STAR on the
angle between shoot axis and view direction. They worked with Scots pine (Pinus sylvestris)
and assumed that the shoot structure is cylinder symmetric. They defined the spherical
average of STAR as STAR and calculated it for shoots that they had measured from several
different view directions. For Scots pine, the assumption of cylinder symmetry in the shoots
is rather good, but not perfect, as can be seen from Fig. 5 in paper I. For other species, such
as Pacific silver fir (Abies amabilis) (Fig. 1 in paper II), or Norway spruce (Picea abies), it
does not hold true at all.

Generally, to be able to estimate the value of the average silhouette area of an irregularly
shaped object, silhouette area measurements from the directions of half of the the full sphere
are required. Since the silhouette area is the same for a direction and its opposite direction,
the full sphere is not required. Smolander and Oker-Blom (1989), Smolander et al. (1994)
and Stenberg et al. (1995a) included also different angles of rotation of shoot axis in their
measurements but they took measurements from one half (Smolander and Oker-Blom 1989,
Smolander et al. 1994) or one fourth (Stenberg et al. 1995a) of the hemisphere only. Paper
II may be the first work since Norman and Jarvis (1974) to present measurements of shoot
silhouette areas with comprehensive sampling of all the hemisphere.

The level of needle clumping in shoots, as quantified by STAR, is generally higher in the
topmost parts of canopy, and decreases with decreasing light availability (e.g. Sprugel 1989,
Leverenz and Hinckley 1990, Schoettle and Smith 1991, Smolander et al. 1994, Niinemets
and Kull 1995, Sprugel et al. 1996, Stenberg et al. 2001, paper II, paper III). Since projected
needle area7 is somewhat easier to measure than total needle surface area, it is sometimes
used instead. In this case instead of STAR we have SPAR (silhouette to projected area ratio)
(Stenberg et al. 1995a).

In a similar manner, usually needle thickness also decreases with the decreasing light
availability from the top to the bottom of the canopy (e.g. Kellomäki and Oker-Blom 1981,
Sprugel 1989, Niinemets and Kull 1995, Sprugel et al. 1996, paper II, paper III). This is
illustrated in Fig. 1 of paper III.

As STAR increases and needle thickness decreases with the decreasing light availability,
they both have the effect of decreasing the amount of needle dry mass per unit shoot silhou-
ette area. We can think that there is more dry biomass “behind” a certain amount of shoot
silhouette area in the top, better illuminated, parts of the canopy than in the lower, more
shaded, parts.

7Area of the projection of needles when they are detached and laid non-overlapping on a flat surface.
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4 RADIATION INTERCEPTION AND
PHOTOSYNTHESIS

The theoretical models of canopy light interception and photosynthesis, as mentioned in sec-
tion 3.1, are based on several simplifying assumptions on canopy structure and the process
of light interception. To facilitate the comparison of theories to nature, we have developed a
method to estimate seasonal light interception by real conifer shoots (paper I). Papers II and
III describe studies on the effect of needle and shoot structure and shoot light interception
efficiency to distributions of light and nitrogen in coniferous canopies, and on how shoot
structure and light interception efficiency differ in canopies of different nutritional status.

4.1 Light interception at shoot level
The amount of photosynthetically active radiation (PAR) intercepted by leaves or shoots
cannot be directly measured by the traditional method of placing horizontal sensors in the
canopy (Anderson 1966). Only in the case of strictly horizontal leaves, the reading of a
horizontal sensor would correspond to the amount of energy a leaf would receive. In the
general case of non-horizontal leaves, or 3-dimensional objects such as shoots, the amount of
intercepted radiation depends on the shape and orientation of the object, and the directional
distribution of the incoming radiation field. While directional measurements of incoming
radiation fields are technically possible (Kuusk et al. 2002), they require lots of effort and
special equipment. This kind of directional data are very rare to date.

Our approach in paper I was to simulate the directional distribution of incoming radiation
from sky during a growing period, based on the equations of motion for the sun, the Beer’s
law for atmospheric attenuation, and an assumption of simple uniform distribution for the
diffuse radiation. The simulated distribution was calibrated to agree with total amounts on
direct and diffuse radiation obtained from meteorological field data.

The radiation fields at the locations of shoots were reconstructed by taking a fish-eye
photographs at the specific shoot locations, and using these to analyze gap fraction (fraction
of visible sky) in different directions as seen from the shoot location. An example is shown
in Fig. 3 of paper I. In paper III, a simpler method was used: The gap fraction of the
whole fish-eye photo taken at the location of a shoot was analyzed. This parameter, termed
openness (Eq. 1 in paper III), provides an indirect measure that correlates strongly with
available light.

To describe the shoot geometry, the shoot orientation was measured before detaching
the shoot from the tree. Then the shoot silhouette area from different directions was pho-
tographically measured in laboratory, and appropriate interpolation and coordinate rotation
procedures were applied to reconstruct the shoot silhouette area as it would have been seen
from different directions of the sky.

Finally, to calculate the amount of light intercepted by the shoot, the simulated direc-
tional distribution of skylight, the directional gap fractions as analyzed from the fish-eye
photograph, and the directional distribution of shoot silhouette area were combined.

The main motivation in paper I was to describe the process of light interception of a
coniferous shoot in a, hopefully, realistic way by including shoot geometry and the direc-
tionality of the radiation field in the description. This is done in order to demonstrate that the
process of light interception is, especially in conifers, more complex than models of the type
described in section 3.1 assume. The model by Monsi and Saeki (1953) is half a century old,
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but similar models are also currently used in canopy photosynthesis modelling (e.g. Thorn-
ley 2002, Medlyn et al. 2003). When modelling large scale processes, model properties such
as simplicity and easy integrability with remote sensing information are of course desirable
properties. However, also simpler models for upscaling purposes benefit from comparisons
with more detailed models. Our description of the shoot level light interception is hopefully
useful when estimating the accuracy of the simpler large scale models.

The shoot seasonal light interception data in paper II, as obtained by the method de-
scribed in paper I, is to my knowledge the first to consider both the directionality of the
incoming radiation field and shoot geometry. This level of detail is required when testing
the theories which predict the relation of leaf nitrogen to intercepted light. Many earlier
works have compared sampled leaf nitrogen content with some indirect measure that cor-
relates with the seasonal light interception. For example, Hirose et al. (1989) have used
measurements from horizontal light sensors, Hollinger (1989) height in canopy, Ellsworth
and Reich (1993) cumulative LAI and Kull and Niinemets (1993) canopy openness.

The theories on nitrogen use optimization describe how nitrogen should be distributed in
relation with intercepted light, but they do not usually specify further e.g. the time interval
and illumination conditions for light interception. In paper II the amount of light intercepted
by shoots during one growth period was chosen as the level of detail for comparison with
the theories. A more complete description of shoot photosynthesis would also include the
distribution of irradiance on the needle surface of the shoot (Oker-Blom 1985, Smolander
et al. 1987, Oker-Blom et al. 1992, Cescatti and Zorer 2003) and the effect of penumbra
(Stenberg 1995). As the light response of leaf photosynthesis is non-linear (see Fig. 1), sim-
ilar amounts of seasonal light interception can lead to different amounts of photosynthetic
production if their spatial, temporal, or both distributions are different (Lappi and Smolan-
der 1984, Smolander 1984). It remains unknown whether light interception at shoot scale
and during one growth period is an adequate level of detail for comparing with the theo-
ries, or whether describing light interception at needle level, and accounting for different
illumination conditions (e.g. clear and overcast days), would be essential in this context.

4.2 Morphology and physiology along light gradient
The study in paper II describes variation in shoot and needle structure and their effect on
the distributions of light and nitrogen in the canopy of a Pacific silver fir (Abies amabilis)
stand. Shoots were collected from different heights in the canopy, shoot seasonal light inter-
ception was modelled using the method described in paper I, shoot and needle structure was
measured, and shoot nitrogen content was analyzed.

The radiation regime around the shoots, as obtained by modelling, was clearly multidi-
rectional (Figs. 2, 3 and 4 in paper II), also for the shoots from lower locations. This makes
accounting for shoot orientation and shape necessary when aiming for accurate estimates
of intercepted light. The amount of light available to shoots was quantified by the amount
of seasonal interception by a spherical surface if it had been at the place of a shoot. The
seasonal light interception of a spherical surface, SLIO (Eq. 4 in paper I, Eq. 3 in paper II),
as averaged at the locations of the five most sunlit shoots was about 40 times greater than
that averaged at the locations of five most shaded shoot. This is indicative of the variation of
available light inside the canopy.

From the top to the bottom of the canopy, SPAR increased about 1.5-fold (Fig. 5A in
paper II). This, together with the interplay of shoot orientations and the radiation fields
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surrounding the shoots (Fig. 8 in paper II), reduced the 40-fold variation in SLIO to about 20-
fold variation in shoot seasonal light interception (SLI), expressed in this case on projected
needle area basis. Needle thickness decreased about two-fold from top to bottom (Fig. 6A
in paper II), resulting in a corresponding increase in specific needle area8 (SNA) (Fig. 6B
in paper II). The responses in SPAR, shoot orientation and specific projected needle area
together resulted in about four-fold response in shoot silhouette area per dry weight (Fig. 6C
in paper II) and in reducing the initial 40-fold variation in available light (as measured by
SLIO) to about 10-fold variation in the intercepted light per dry mass.

Needle nitrogen content9 increased linearly with seasonal light interception (Fig. 9 in
paper II), albeit with a positive intercept at zero light interception. On mass basis, needle
nitrogen concentration (nitrogen per dry mass) increased about 1.5-fold from the bottom
to top of the canopy in the dominant and codominant trees. However, the largest nitrogen
concentrations were observed in the suppressed trees, which had foliage only in the shaded
parts of the canopy. Thus, in the data as a whole, there was no correlation between light
availability and needle nitrogen concentration (Fig. 7A in paper II). The lowest observed
nitrogen concentrations were about 5.5 – 7.5 mg/g. In a survey of 21 species of C3 plants,
Field and Mooney (1986, p. 37) present a rough approximate value of 0.5 mmol/g = 7 mg/g
for the point where photosynthesis (in abundant light) just compensates for respiration, but
commenting that there is much variation in the data between species.

Paper III presents a study on shoot and needle morphology and nitrogen concentration
along light gradient in Norway spruce (Picea abies), with the added dimension that these
properties were compared between trees from an irrigated and fertilized and a control (“nat-
ural”) stand. Generally, shoot silhouette to dry mass ratio (SMR) increased three-fold from
the most sunlit to the most shaded shoots in the data (Fig. 7 in paper III). However, in the
irrigated and fertilized stand more of the variation in SMR resulted from variation in spe-
cific needle area (SNA), and less from variation in STAR. In the control stand, STAR caused
more variation in SMR than SNA (Figs. 5 and 6 in paper III). The proximate reason for this
was that the shoots in the control stand had smaller needles and lower needle density. Foliar
nitrogen concentration was consistently higher in the irrigated and fertilized stand, and it
increased with increasing openness about 1.3-fold in the irrigated and fertilized stand and
about 1.2-fold in the control stand (Fig. 3 in paper III). The lowest new shoots were found at
2% openness in the irrigated and fertilized stand, and at 10% openness at the control stand.

4.3 Discussion and conclusions
It is important to note the difference between available light and intercepted light. There
is theoretical (e.g. Stenberg 1996b) and experimental (among others, papers II and III) ev-
idence that it may be advantageous for trees to have smaller light interception efficiency
in the higher parts of canopy so that more light penetrates to the lower parts. In this way,
a higher total leaf area can be maintained. The data in papers II and III suggest that the
shoot light interception efficiency can vary about two-fold per needle area, about four-fold
per dry mass, and about five-fold per nitrogen. This plasticity is not limited to conifers,
also broadleaved trees can control the amount of intercepted light by altering leaf angle and
branch structure (e.g. Kull and Tulva 2002). Branch structure at the higher level than shoot
structure supposedly also has an effect in conifers, but studies on this are rare.

8(In this case, projected) needle area divided by needle dry weight
9Amount of nitrogen per (projected) needle area
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It is also notable that the spherically averaged shoot silhouette area is not an accurate
measure of shoot light interception efficiency (Fig. 8 in paper II). Especially in the lower
part of canopy the radiation field, while not unidirectional, is concentrated near the top part
of the hemisphere (Figs. 3B and 4 in paper II). At the same time, the shoots in species like
Abies amabilis and Picea abies in the lower canopy tend to be flat and horizontal, which
makes the shoot orientation more favourable to light interception than a spherically dis-
tributed orientation would be.

Direct measurement of light intercepted by shoots in natural conditions is a technical
problem that has not yet been solved. The work in paper I presents a solution combining
modelling and relatively easy measurements to achieve the result without direct measure-
ments. As the intercepted light is the concept which is used in the nitrogen-use optimization
theories, obtaining measured values for it is needed for direct comparison between theories
and nature.

The basic prediction of the nitrogen-use optimization theories is that trees should dis-
tribute nitrogen in relation to intercepted light. The details of the distribution vary somewhat
between different theories. Papers II and III detail the mechanisms (changes in shoot struc-
ture, needle structure, and nitrogen concentration) controlling the nitrogen distribution and
that they can lead up to five-fold difference in the amount of nitrogen per unit of light inter-
cepting shoot silhouette area in the observed canopies.

5 RADIATION SCATTERING AND REMOTE SENSING
In coniferous canopies the density of scattering elements changes in the shoot scale, and
also in larger scales (branches, tree crowns). It is not feasible to include such small scale
variation into the leaf area density function, when formulating the radiative transfer problem
for coniferous canopies, since that would require specifying the location of each shoot in
the canopy. For example, Knyazikhin et al. (1997) used a density function that is piecewise
constant in a mesh of 0.5 m sided cubes. When the leaf area density function varies in a
length scale that is larger than the length scale in which needles are clumped into shoots, we
need an additional method to account for the shoot scale clumping in the models.

If we assume no scattering, i.e. that the canopy elements are optically black, the descrip-
tion of radiation inside canopy is reduced from Eq. 6 to Eq. 3. This assumption is rather
common when modelling radiation penetration into canopy for the purposes of photosynthe-
sis modelling or leaf area index measurements. In these models, the phenomenon of needle
grouping into shoots has been dealt with by introducing a grouping (or clumping) coeffi-
cient (e.g. Oker-Blom and Kellomäki 1983, Oker-Blom 1986, Stenberg 1996a, Chen et al.
1997, Nilson 1999). This coefficient, STAR (see section 3.2) or something similar, has the
effect of decreasing the total interaction cross section σ (see section 2) for a given amount
of needle area density. Using this kind of correction coefficient for shoot level clumping
is conceptually equivalent to using shoots as the basic units (scattering elements), and the
statistical density function then describes shoot density, not needle density (Nilson and Ross
1997). Some recent canopy reflectance models (Knyazikhin et al. 1998b, Kuusk and Nilson
2000) have used this kind of parameterization.

What seemingly has gone unnoticed in previous models, is that when a shoot level group-
ing index is used to reduce the area interaction cross section, meaning that shoots, not nee-
dles, are treated as the basic scattering elements, optical properties (usually transmittance
and reflectance) measured from needles can no longer be used to describe the scattering
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properties of the basic elements.
In paper IV, the process of light scattering from coniferous shoots is studied using pho-

ton tracing and a geometric model of shoot structure, and a simple wavelength dependent
correction to scattering is proposed. In paper V the consequences of this correction at canopy
scale are explored using simple model canopies.

5.1 The recollision probability
The key concept in papers IV and V is the recollision probability. It is defined as the proba-
bility that a photon inside a canopy, after being scattered, will collide with the canopy again.
A similar definition is applied for recollisions within a shoot, in this case regarding the shoot
as a mini-canopy. The probability of hitting the canopy again is supposedly different for
photons in different locations and flying to different directions. However, the methods de-
veloped in this work are based on the simplifying assumption that these differences do not
matter much, and that we can use just one value of recollision probability when modelling
the amount of multiple scattering that takes place within a certain canopy (or a shoot). It
turns out that this simplifying assumption gives very good results.

Similar ideas have been used in nuclear reactor theory. The key objective in nuclear en-
gineering is to keep the number of neutrons in a reactor stable. Neutrons are lost to absorp-
tion, and new neutrons are created in collisions (that is, scattering events). In this process,
the changes in the number of neutrons in successive generations is of interest. In nuclear
reactor theory literature, the ratio of the number of neutrons in two successive generations is
known as the “multiplication factor” or the “multiplication factor eigenvalue” (see sec. 1.5
in Bell and Glasstone 1970), albeit it is not really an eigenvalue in the usual linear algebra
sense. For a photon flying inside a canopy to pass from one generation to the next one, both
recollision and a subsequent scattering are required. Thus, recollision probability multiplied
by scattering probability gives the multiplication factor.

In thermal engineering, the concept of recollision probability is known as view factor or
shape factor, giving the proportion of radiation emitted by a body that hits the body again
(e.g. Holman 1986). It is important when calculating the capacity of cooling elements to
lose heat by thermal radiation. The idea of radiation from one needle hitting the neighboring
needles within the same shoot, in the context of heat transfer, has been mentioned by Gates
and Benedict (1963).

Knyazikhin et al. (1998b) used the concept of multiplication factor eigenvalue, calling
it the “unique positive eigenvalue of the radiative transfer equation”, to develop a simple
formula for relating canopy absorption in one wavelength to that in another, when leaf ab-
sorption was assumed to be known in both wavelengths. Panferov et al. (2001) noted that
when the multiplication factor is divided by the element scattering coefficient, the remain-
ing term should be independent of wavelength, and thus be related only to the geometrical
structure of a canopy. They termed this factor as the “canopy spectral invariant pi”. This is
the same concept that is termed the recollision probability here.

The recollision probability is applied to calculate multiple scattering within a canopy as
follows. In this example, ground reflectance is assumed to be zero. The part of photons
passing through the canopy without colliding is called zero order transmission (t0). The
part of photons that collide is called zero order interception (i0). Together, i0 + t0 = 1.
Following the fates of the collided photons (i0), part of them will be absorbed in the first
collision (a1). The part of the photons that are scattered at least once before absorption is
called the scattered component of absorption (as). Photons that are scattered at least once
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and then escape the canopy downwards, are the scattered component of transmission (ts), and
photons that escape upwards constitute the reflection (r). Naturally there is no uncollided
component in the reflection. Noting that the components are wavelength dependent, except
i0, we get

a1(λ) + as(λ) + r(λ) + ts(λ) + t0 = 1. (10)

Under the simplifying assumption that the recollision probability is constant in succes-
sive scatterings, we can write the total absorptions as a series

a = i0 [(1− ω) + ωp (1− ω) + ω2p2 (1− ω) + . . .]

= i0
1− ω

1− ωp
, (11)

where ω is the element scattering coefficient, and p the recollision probability for the canopy.
(The dependence of a and ω on λ is not written, to shorten the notation). The fraction of
photons that are absorbed at the first collision, a1, is given by i0 (1−ω). Thus, we can write
Eq. 11 also as

a = a1 + i0 [ωp (1− ω) + ω2p2 (1− ω) + . . .]

= a1 + i0
ωp (1− ω)

1− ωp
(12)

and here the last term gives the multiply scattered part of absorption, as. Now we see that
the multiply scattered part of the total absorption simplifies to

as

a
=

ωp (1− ω)

1− ωp

/
1− ω

1− ωp
= ωp. (13)

The approach of Eq. 11 can also be interpreted as a Markov chain, and it is illustrated in
Fig. 1 in paper V.

The above parameterization was based on a simple probabilistic model of multiple scat-
tering. Knyazikhin et al. (1998b) and Panferov et al. (2001) used different methods (they
expanded the solution to the radiative transfer equation (Eq. 6) in series of orthogonal func-
tions and truncated the series focusing on the coefficient of the first, dominating term) and
arrived at a similar parameterization.

Knyazikhin et al. (1998b) and Panferov et al. (2001) also presented a similar parameter-
ization for the fraction of scattered radiation in canopy transmission. This parameterization
was later formulated by Shabanov et al. (2003) into the form

ts
t

= ωpt, (14)

where t = t0 + ts is the total canopy transmission, and pt is a wavelength independent,
canopy structure related parameter describing canopy transmittance.

Both Eqs. 13 and 14 assume that the scattered part in total canopy absorption and trans-
mission depends linearly on the element scattering coefficient. The coefficients p (termed pi

by Panferov et al. (2001)) and pt are postulated to be related to the canopy structure. The
following sections, and papers IV and V, show that the parameterization for absorption, at
both shoot scale and canopy scale, conforms well with results from simulations, while the
parameterization for transmission does not conform with the simulations.
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5.2 Multiple scattering at shoot level
In paper IV, measured data and a geometric model of a Scots pine (Pinus sylvestris) shoot
structure by Stenberg et al. (2001) is used. An illustration of the model shoot is shown
in Fig. 1 in paper IV. The main assumptions in the light scattering simulations were the
following: needles were cylindrical in shape, needles followed a Fibonacci phyllotactic ar-
rangement, needle reflectance and transmittance were always equal to each other, and both
reflected and transmitted light followed the Lambert distribution. The idea of recollision
probability was applied here at shoot level, and the recollision probability was denoted by
psh.

The scattering properties of the model shoot was studied using the photon tracing tech-
nique (see section 2.5). The constructed scattering phase functions for a model shoot are
shown in Fig. 3 in paper IV. Multiple scattering within a shoot was found to be consider-
able. For example, using the value psh = 0.6 from Fig. 6 in paper IV (this is for a shoot
from top canopy) in Eq. 5 in paper IV, and using needle scattering coefficient ωL = 0.9
to represent near infrared (NIR) radiation, we get the result that a photon hitting the shoot
will interact with it 2.17 times on the average. Or, for the shoot illustrated in Fig. 1 (which
was taken from the middle canopy) in paper IV, psh = 0.47 and the average number of NIR
interactions is 1.73.

The recollision probability was used to construct a very simple model of multiple scat-
tering as a geometric series (Eqs. 4 and 5 in paper IV) to relate shoot scattering coefficient
to needle scattering coefficient at the same wavelength. This simple formula agreed remark-
ably well at all wavelengths with the values of shoot scattering coefficient obtained from
photon tracing simulations (Fig. 5 in paper IV). Further, the shoot level recollision probabil-
ity (psh) was shown to be approximately equal to 1− 4 STAR. This means that the values of
STAR already reported in the literature for several species (papers II and III, Stenberg et al.
1999, 2001, Cescatti and Zorer 2003) can be directly utilized in parameterizing within-shoot
multiple scattering.

5.3 Multiple scattering at canopy level
The consequences on canopy level of accounting for the within-shoot shoot multiple scatter-
ing (previous section, paper IV) are explored briefly in paper IV and in more detail in paper
V. Simple model canopies with homogeneous structure were constructed with either leaves
or shoots as the basic scattering elements. In the simulations, photons were fired into the
canopy, and the absorption and scattering processes were sampled accordingly. With leaf
canopy, scattering was sampled from the scattering phase function for spherically oriented
leaves (Eq. 9 in paper IV). With shoot canopy, the scattering process was simulated by us-
ing the shoot level photon tracing model of paper IV as a sub-model for the canopy level
simulations.

The fates of the photons were followed and statistics were collected of the number of
photons that (i) went through the canopy with no interactions, (ii) were absorbed after zero,
one or more interactions, or (iii) were scattered out of the canopy (either upwards or down-
wards) after one or more interactions (see Fig. 2 in paper V for an example). These simula-
tions were performed for canopies of several leaf area indices, and with varying leaf/needle
scattering coefficients (which represented different wavelengths).

With these statistics, the idea by Panferov et al. (2001) of using one parameter to describe
the wavelength dependency of canopy absorption was tested, and found to be good with both
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leaf and shoot canopies. This parameter, the canopy level recollision probability, was shown
to be decomposable between shoot level and higher level multiple scattering (Eq. 5 and Fig. 5
in paper V).

Knyazikhin et al. (1998b) and Panferov et al. (2001) have also proposed a parameter
similar to pi (which describes wavelength dependent canopy absorption), the pt, to describe
wavelength dependent canopy transmission. With absorption and transmission known, the
most relevant property from the remote sensing point of view, reflection, is easy to calculate
as 1–absorption–transmission. The pt-parameterization, when compared with the simula-
tions, performed relatively well with the leaf canopies, but not well with the shoot canopies.

As an example of including the shoot level correction for a general radiative transfer
model, a simple two-stream model by Ross (1981, section II.6.4) was chosen. With this
correction included, Ross’ model compared rather well with all the simulations (Figs. 7 and
8 in paper V).

5.4 Implications for remote sensing
As already implemented in some canopy reflectance models (Knyazikhin et al. 1998b, Ku-
usk and Nilson 2000), the effect of shoot level clumping for the amount of light a canopy
intercepts can be implemented by multiplying the leaf area density of the canopy by a clump-
ing index. In this way we get an “effective leaf area density” that describes the efficiency
of shoot silhouette area to intercept and attenuate light traversing inside the canopy. In this
work I propose that such a correction should logically be accompanied by a wavelength
dependent correction for the degree of within-shoot multiple scattering.

For example, if a canopy consists of shoots with a clumping index STAR = 0.133, the
effective leaf area index of the canopy is reduced by 4 STAR = 0.532. When performing
radiative transfer modelling for this canopy at, say, NIR wavelengths with a needle scattering
coefficient of 0.9, we should – since we have chosen shoots as the scattering elements in the
model – use shoot level scattering coefficient in the model. The shoot scattering coefficient
obtained using values ωL = 0.9 and psh = 1− 4 STAR in Eq. 6 in paper IV is 0.829, instead
of the needle level value of 0.9.

This correction for the shoot level multiple scattering causes a wavelength dependent
increase in canopy absorption (Fig. 3 in paper V) and an accompanying decrease in reflection
and transmission (Fig. 7 in paper V). The increase in canopy absorption is largest when
scattering is high but not perfect, corresponding to needle scattering coefficients of around
0.7 – 0.9. This is the situation in NIR wavelengths.

Interestingly, when Kuusk and Nilson (2000, 2001) compared their canopy radiative
transfer model to measured data, they note that it specifically seems to underestimate the
NIR and MIR (middle infrared) absorption in coniferous canopies, and discuss that this
could be related to the inadequacy of their algorithm to calculate multiple scattering when
canopies contain clustered structures.

5.5 Discussion and conclusions
The specific values chosen for needle reflectance and transmittance in paper IV may not be
the most realistic. Especially the assumption that needle reflectance always equals transmit-
tance was made more in order to achieve simplicity than realism. Measuring these values for
conifer needles is somewhat complicated technically (Daughtry et al. 1989, Mesarch et al.
1999), but some values have been reported (Daughtry et al. 1989, Williams 1991, Rock et al.



25

1994, Middleton et al. 1997, Mesarch et al. 1999) and generally needle reflectance is larger
than transmittance. Additionally, I think that the concepts of needle reflectance and transmit-
tance – needles mostly not being even remotely planar shaped objects – would benefit from
careful definition. This would help to clarify what is actually being measured, and whether
light escaping from the sides of needles is counted as reflectance, transmittance, or whether
it escapes from the measurement system is such a way that it is not included in either. I
am not aware of any reported measurements of the specular reflectance of needle surface.
However, measurements by Brakke (1994) on some broadleaved species indicate that spec-
ular reflectance may not be negligible. The existence of the phenomenon of needle specular
reflection is also easy to qualitatively verify by visually observing needles. An improved
model of shoot level scattering would include realistic values for needle optical properties,
and needle surface specular reflectance.

The recollision probability holds potential to be the single parameter needed to describe
how canopy spectral absorption depends on the absorption of canopy elements (leaves, nee-
dles). Present results show this approach to adequately describe absorption in homogeneous
canopies, and with the inclusion of shoot level clumping when the higher level structure
remains homogeneous. The final usefulness of the concept depends on whether the same ap-
proach can be successfully used to describe absorption in canopies with several intermediate
levels of hierarchical grouping.

The results in paper V (Fig. 8) show that while the pt-parameterization of Panferov et al.
(2001) performs well in the simple case of homogeneous leaf canopy, the introduction of
shoot level clumping in the canopy causes the pt-based description to deviate from the sim-
ulation results. This gives reason to assume that the pt-parameterization might not perform
well with canopies with grouping in several hierarchy levels. Also, the assumptions behind
pt as seen from Eq. 14 seem suspicious since it is assumed that the fraction of scattered
radiation in total canopy transmission depends linearly on the element scattering coefficient.
This assumption is not supported by the simulations (Fig. 2 in paper V). Still, Fig. 8D in
paper V indicates regularity in the fractions of upwards and downwards scattered radiation.
Perhaps it would be possible to develop another simple parameterization for this process.

Satellites mostly measure reflectances from a single direction, or from a limited set of
directions. The models in this work have mostly considered the total reflection to the upper
hemisphere. Forest directional reflectance varies for different measurement and solar direc-
tions, and is also influenced by crown structure (e.g. Rautiainen et al. 2004) and, according
to simulations by Disney et al. (2006), by needle shape and shoot structure.

To conclude, papers IV and V demonstrate that accounting for multiple scattering at the
shoot scale is important for accurate models of coniferous canopy radiative transfer and scat-
tering. One way to handle clumped structures in modelling is to simulate their spectral scat-
tering properties in isolation (paper IV) and use the results to derive parameterizations for
scattering to be used in models of higher structural level (papers IV and V). Another way, as
has recently been demonstrated by Disney et al. (2006), is to model complete forest canopies
to needle level precision, and directly simulate light scattering in the model canopies by pho-
ton tracing techniques. Using any approach, the effect that the canopy structural properties
at different hierarchy levels have on the canopy reflectance should be described in a way
that is helpful in model inversion, i.e. estimating LAI or other structural information from
canopies with varying level of clumping using reflectance data.
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Summary We present an operational method for estimating
the amount of PAR intercepted by a coniferous shoot. Intercep-
tion of PAR by a shoot is divided into three components: the
amount of radiation coming from the sky, the transmission of
radiation through the surrounding vegetation, and the shoot’s
silhouette area facing the direction of the incoming radiation.
All three components usually vary with direction. Radiation
incident from the sky consists of direct and diffuse radiation.
The well-known equation of motion for the sun and Beer’s
Law for atmospheric transmittance are used to simulate the di-
rectional distribution of direct sunlight for any given period of
time. The diffuse component is assumed to be uniform. Meteo-
rological field measurements are used to calibrate the absolute
amounts of the direct and diffuse components. The gap fraction
(proportion of visible sky) in different directions around a
shoot is measured by analyzing a hemispherical fish-eye pho-
tograph, taken at the location of the shoot, with an image pro-
cessing program. Similarly, the shoot silhouette area (SSA) is
measured by photographing the shoot from many different di-
rections. The measurements of SSA are interpolated by a
method called trigonometric interpolation to obtain the direc-
tional distribution of SSA over the entire hemisphere. This dis-
tribution is then rotated according to the shoot’s position in the
canopy. Multiplying incoming PAR, canopy gap fraction and
SSA in different directions, and summing over all directions,
gives an estimate of PAR intercepted by the shoot during the
chosen period of time. The method is described step by step,
and applied, as an example, to a shoot from a Scots pine (Pinus
sylvestris L.) stand in central Finland. Differences in radiation
interception properties between sun and shade shoots and their
relevance to canopy-scale models are discussed.

Keywords: gap fraction, light interception, shoot silhouette
area, SPAR, STAR, trigonometric interpolation.

Introduction

Characterization of the photosynthetic radiation regime of co-
niferous forests has proved problematic because of their heter-
ogeneous canopy architecture caused by the grouping of
foliage at different levels of hierarchy (Norman and Jarvis
1975, Oker-Blom 1986, Nilson 1992). Many arguments sup-
port consideration of the shoot as the basic element of pho-

tosynthetic light capture in conifers (Stenberg et al. 1995).
However, the complex geometrical arrangement of needles on
shoots requires a different conceptual and methodological ap-
proach to quantitatively characterize the amount of photosyn-
thetically active radiation (PAR) absorbed by the shoot.

We note that the PAR intercepted by leaves or shoots in a
canopy cannot be directly measured, e.g., by the traditional
method of placing horizontal sensors in some fixed arrange-
ment within the canopy. Improved accuracy has been obtained
by increasing the number of sensors and the period of mea-
surement; however, the limitation is not related to spatial and
temporal resolution but to lack of correspondence. As formu-
lated by Anderson (1966), radiation measurements are invalid
because radiation is measured with artificial surfaces that dif-
fer from the photosynthetically active elements with respect to
size, structure, arrangement and directional distribution.

We have developed a method for estimating the amount of
PAR intercepted by a coniferous shoot during a specified pe-
riod of time. The directional distribution of incoming radiation
is modeled, based on the well-known equation of motion for
the sun, Beer’s Law for atmospheric transmittance, and semi-
empirical relationships for the proportion of direct and diffuse
radiation. The absolute amount of incoming radiation during
the specified time period is calibrated from meteorological
field measurements. No measurements of irradiance within
the canopy are required, because conifer needles scatter only a
minor part of the photosynthetically active radiation (i.e., ab-
sorption is close to unity) (Williams 1991). The fraction of
above-canopy PAR entering a shoot can thus be estimated
based on the canopy gap fraction in different directions of the
upper hemisphere. Similarly, for a given direction of radia-
tion, the PAR intercepted by the shoot is proportional to the
shoot’s silhouette area in that direction. The directional distri-
bution of gaps in the canopy is provided by hemispherical pho-
tographs taken at the shoot’s location. The directional distri-
bution of shoot silhouette area (SSA), rotated according to the
shoot’s original position in the canopy, is obtained by trigono-
metric interpolation based on photographical measurements
of the silhouette area in several specified directions. Multi-
plying incoming PAR, canopy gap fraction and SSA in differ-
ent directions, and summing over all directions, gives an esti-
mate of the PAR intercepted by the shoot during the chosen
time period.
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Methods

Theoretical background

Let q(ω) denote the seasonal amount of radiant energy (from
solid angle to unit area; J sr–1 m–2) incident from the direc -
tion ω of the hemisphere Ω. The function gf(ω) denotes the
gap fraction (proportion of visible sky) of the surrounding
vegetation, as seen from the location of a shoot in the direc -
tion ω. The function gf has values from 0 to 1. The term
SSA(ω) denotes the shoot silhouette area on a plane normal to
the direction ω. A shoot’s seasonal light interception (SLIs; in-
tercepted radiation per unit needle area) can be expressed as:

SLI
NA

gf SSA( )d ,s = ∫
1

q( ) ( )ω ω ω ω
Ω

(1)

where the integral is the total amount of energy intercepted by
the shoot. The ratio of the integral to the needle area (NA) of
the shoot yields the mean amount of intercepted energy per
unit needle area. The ratio of SSA to NA is known as STAR
(silhouette to total area ratio), when NA refers to the total (all
sides) needle area. The spherically averaged STAR (STAR) is
defined as:

STAR
NA

SSA( )d .= ∫
1 1

2π
ω ω

Ω

(2)

If NA is expressed on a projected area basis, the correspond-
ing ratios are denoted SPAR and SPAR (Stenberg et al. 1995).
Seasonal light interceptance (SLIs; Equation 1) is obtained as
an integral of the directional values of STAR (SPAR)
weighted by the radiant energy incident from these directions.

For comparison, the intercepted radiation per unit area of a
flat horizontal surface (e.g., a flat sensor) at the shoot’s loca-
tion would be:

SLI gf( )sin( d ,h = ∫q a( ) )ω ω ωω
Ω

(3)

where aω is altitude angle of the direction ω. The intercepted
radiation per unit cross-sectional area of a spherical surface
(e.g., a spherical sensor) would be:

SLI gf( )dO = ∫q( ) .ω ω ω
Ω

(4)

This quantity is also known as radiant field strength (Bell and
Rose 1981). Note that throughout the paper, radiation is as-
sumed to be incident from the upper hemisphere only.

Above-canopy radiation regime

In the simulations, the amount of PAR above the atmosphere,
or the PAR component of the solar constant, is assumed to be
S0 = 600 W m–2 (Weiss and Norman 1985). The instantaneous
location of the sun in the sky is given by the solar altitude as

and azimuth φs angles. These can be solved from the formulas:

sin cos cos cos + sin sinsa h= δ δΦ Φ (5)

and
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cos
cos cos sin sin cos
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⎪
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(6)

where h denotes hour angle, δ is declination and Φ is latitude
(Karttunen et al. 1996).

Atmospheric transmittance of direct sunlight from the ze-
nith direction is denoted by τ and air mass by m. Air mass is the
relative path length through the atmosphere from solar altitude
angle as and is approximated by m = min(1/sinas,35) (List
1984). Assuming clear sky conditions, the instantaneous irra-
diance of direct sunlight on a surface perpendicular to the radi-
ation is given by Beer’s Law as S0τm. Gates (1980) suggests
values between 0.6 and 0.7 for τ. A value of τ = 0.7 is used in
the example.

The sky is divided into sections by altitude and azimuth an-
gles (see Figure 1). Resolutions of 5° by 30°, or higher, are
recommended in the computation. In Figures 1–4, a resolution
of 15° by 45° (6 × 8 = 48 sections) is used. The method is con-
ceptually easy to adjust for uneven divisions in relation to alti-
tude or azimuth angle—for example, so that the solid angles of
the sections are equal. The trajectory of the sun is followed
throughout the growing season. At every time step (e.g.,
1 min), Equations 5 and 6 are used to locate the sun in one of
the sections, and the energy input, obtained as S0τm multiplied
by the length of the time step, is added to the account of the
section. These values are arranged in a matrix S so that each
row corresponds to a class of altitude angles and each column
to a class of azimuth angles. For example, at a resolution of
15° by 45°, S32 would indicate the sky section of 30–45° by al-
titude and 22.5–67.5° by azimuth. The values Sij give the di-
rectional distribution of direct radiation during the growing
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Figure 1. Division of the sky into 6 × 8 (15° by 45°) sections and the
location of the sun every 20 minutes on August 1, 1998 in Suonenjoki
(62°39′ N, 27°05′ E). In practice, a higher resolution is recommended.



season, assuming that every day was clear. The radiation en-
ergy from S to a unit horizontal surface is given by:

E S Sij ij
ji

( ,) = sin∑∑ (7)

where sinij is the sine of the altitude angle of the midpoint of
the section i, j. The summation is carried over all altitude and
azimuth angle classes.

We used material from a Scots pine (Pinus sylvestris L.)
stand at Suonenjoki Research Station (62°39′ N) as an exam-
ple (Stenberg et al. 2001, this issue). The time period consid-
ered in the computations of the seasonal estimates (Equa-
tions 1, 3 and 4) was August 1998, because this was when the
measurements were made. Performing the computation for
August 1998 in Suonenjoki gives an irradiance of 188 MJ m–2

for direct PAR (400–700 nm) to the horizontal plane. Meteo-
rological field measurements give an irradiance of 136 MJ m–2

of total (300–4000 nm) direct radiation to the horizontal plane
in August 1998 (Finnish Meteorological Institute). The pro-
portion of PAR in total radiation is approximately 45%
(Larcher 1995), giving a value of 61.2 MJ m–2 PAR in the me-
teorological observation. (We note that the proportion of PAR
in direct and diffuse radiation depends on many factors—see
Ross and Sulev 2000—but for simplicity we used 45% in both
cases.) Thus, multiplying every entry in the matrix S by the
factor:

k = =61 2
0 326

.
. ,

kJ m

188 kJ m

–2

–2
(8)

or simply writing kS, gives a calibrated estimate of the direc-
tional distribution of direct PAR radiation above Suonenjoki
in August 1998. We note that this estimate is based on the as-
sumption that, on average, the reduction in direct radiation by
cloud cover is similar in all directions. If there were only thick
clouds, the value for k would represent the fraction of time
when the sun was unobscured by clouds.

The meteorological field measurements give an irradiance
of 187 KJ m–2 for total diffuse radiation to the horizontal plane
during August 1998. Again, 45%, or 84.2 KJ m–2, is assumed
to be PAR. A matrix D is constructed by:

Dij ij= ×sa
kJ m–284 2.

,
π

(9)

where saij is the solid angle of the section i, j in steradians. The
matrix D describes a uniform distribution of diffuse PAR radi-
ation. Note that D represents the sum of all diffuse PAR during
the time period considered. Usually, in clear sky conditions,
diffuse radiation is higher near the horizon, whereas during
overcast conditions it is higher near the zenith (Robinson 1966).

Finally, the matrix T = kS + D describes the directional dis-
tribution of PAR radiation above Suonenjoki for August 1998.
The values of Tij serve as estimates of the function q(ω) (cf.
Equations 1, 3 and 4) integrated over the respective sky sec-
tions i, j (see Figure 2).

Within-canopy radiation regime

The shading effect of the surrounding vegetation can be ana-
lyzed from a hemispherical photograph taken at the location of
a shoot. The orientation of the photograph must be known, and
the camera should be leveled carefully. By means of hemi-
spherical image analysis software, the photograph is divided
into sections i, j as in Figure 1, and the mean proportion of visi-
ble sky within each section is determined as the fraction of
white pixels (see Figure 3; for details, see Stenberg et al. 2001,
this issue). These values are represented by a matrix G, where
Gij is the estimate of the function gf in the corresponding sky
section (cf. Equations 1, 3 and 4). Multiplying the incoming
energy, Tij, from the direction i, j, by Gij yields an estimate of
incoming energy from that particular direction to the location
of the shoot (see Figure 4).

The seasonal radiation to a unit horizontal surface at the lo-
cation of the shoot can be estimated as:

SLI sinh = ∑∑ T Gij ij ij
ji

. (10)

This estimate corresponds to the reading of a flat sensor
measuring continuously during August 1998 at the location of
the shoot. The estimate of seasonal radiation per unit cross-
sectional area of a sphere is:

SLIO = ∑∑ T Gij ij
ji

, (11)

which is what a spherical sensor at the shoot’s location would
detect.

Light interception by a shoot

To utilize the directional distribution of incoming energy at a
shoot’s location to estimate light interception by the shoot, the
directional distribution of the shoot silhouette area (SSA) must
be known. Before detaching the shoot from the tree for mea-
surements of SSA, the inclination and azimuth of the shoot
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Figure 2. Simulated distribution of above-canopy PAR in Suonenjoki
for August 1998. The value assigned to each section is the radiant en-
ergy per unit area incident from a unit solid angle of that section.



axis and the shoot’s rotation angle to the vertical are measured.
To define the rotation angle, picture a hypothetical plane di-
viding the shoot into dorsal and ventral sides, and a vector nor-
mal to this plane. The rotation angle is the angle between this
vector and a vertical plane through the axis of the shoot. When
the tip of the shoot is pointing toward the viewer, the positive
opening direction of the rotation angle is clockwise. For the
example shoot, azimuth was 160°, inclination was 45° and ro-
tation was 0°.

The SSA of the shoot is measured photographically in dif-
ferent view directions (φ,γ). We used a resolution of 30° in the
φ direction and 90° in the γ direction. The time to take and pro-
cess the 11 photographs in this example was about 30 min per
shoot (for further description of the measurement process see
Stenberg et al. 2001, this issue).

The measured values were interpolated by two-dimensional
generalization of trigonometric interpolation to give SSA(φ,γ)
for all values of φ and γ (Figure 5) (Smolander 1999; see Stoer
and Bulirsch 1980, pp 76–84, for trigonometric interpolation,
and Press et al. 1992, pp 95–97, for two dimensional interpo-

lation). For the present application, trigonometric interpola-
tion was used, because SSA is a periodic function of the
angles. The value of STAR was calculated by Equation 2
based on the interpolated SSA(φ,γ) values, and Ω = (–π/2,π/2)
× (–π/2,π/2), ω = (φ,γ) and dω = cosφdφdγ.

Shoot silhouette area as seen from direction ω of the sky,
SSA (ω), is determined from the interpolation function
SSA(φ,γ) (see Figure 5). The recorded information on the
shoot’s natural orientation in the canopy defines the coordi-
nate transformation required to solve φ = φω and γ = γω for ev-
ery ω. A matrix of SSA is constructed such that SSAij is the
shoot silhouette area SSA(φω,γω) as seen from the centerpoint
of the sky section i, j. Now SLIs can be estimated as:

SLI
NA

SSAs = ∑1
T Gij ij ij

i j

.
,

(12)

Results

The example shoot intercepted 85.6 kJ of PAR during August
1998. In terms of SLIs (Equation 1), this amounted to 3.11 kJ
cm–2 per unit projected needle area (measured photographi-
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Figure 3. (A) A hemispherical
photograph taken at the loca-
tion of a shoot. Total openness
is 0.33. (B) The same photo-
graph after discretizing into
sections (see Figure 1) and cal-
culating the mean gap fraction
for each section.

Figure 4. Hemispherical distribution of PAR at the location of a shoot.
This image can be thought of as Figure 2 as seen through Figure 3B.
Note the different scale.

Figure 5. Directional distribution of SSA for the sample shoot. The
solid circles denote measured values.



cally to be 27.5 cm2) or 0.991 kJ cm–2 per unit (all-sided)
needle area (estimated as π times the projected area). By com-
parison, the energy of PAR received on a horizontal plane
(SLIh) at the shoot’s location during the same period was
4.48 kJ cm–2, and SLIO was 7.02 kJ cm–2. The numbers corre-
spond to the readings that would have been given by a flat and
a spherical sensor, respectively, placed at the location of the
shoot. Values of SLIh, or preferably SLIO, which is unbiased
insofar as it does not discriminate among directions, are ap-
propriate measures of available PAR, and can be used to char-
acterize the light environment at the location of the shoot.
However, they are insufficient for estimating PAR intercepted
by the shoot, because interception is a function of both the ra-
diation field surrounding the shoot (the receiving object), and
the structure and orientation of the shoot (object) itself.

We give an example to illustrate this point. Consider a col-
lection (layer) of randomly distributed and spherically ori-
ented needles situated at the same location (i.e., depth in the
canopy) as our experimental shoot. These commonly used
model assumptions imply that PAR interception per unit total
needle area equals that of a spherical surface at the given loca-
tion. Thus, in our example, the intercepted PAR per unit total
needle area of the layer is estimated as SLIO divided by 4, i.e.,
7.02 kJ cm–2/4 = 1.76 kJ cm–2. (Notice that the factor 1/4,
which is the ratio of cross-sectional to total area of a sphere,
enters because the reading of a spherical sensor is per unit
cross-sectional area.) The value obtained (1.76 kJ cm–2) is
considerably higher than the calculated PAR interception per
total needle area of our shoot (0.991 kJ cm–2). The relative dif-
ference between the estimates (1.76 – 0.991)/1.76 = 44% indi-
cates the degree to which the mutual shading of needles on the
shoot decreased PAR interception during the time period con-
sidered.

The spherically averaged ratio of shoot silhouette area (in-
tercepting area) to total needle area (STAR, Equation 2) of the
shoot was 0.141. We note that SLIO multiplied by STAR
(7.02 kJ cm–2 × 0.141 = 0.990 kJ cm–2) almost exactly
matched the calculated SLIs of the shoot, reflecting that the di-
rectional variation in SSA (Figure 5) was not extreme. This
simplified method of estimating PAR interception by a shoot
may be used as a first approximation, but is theoretically cor-
rect only when SSA does not vary with direction, or in the (un-
realistic) case when the shoot receives the same amount of
PAR from all directions of the upper hemisphere (q × gf con-
stant in Equation 1). In a study on Abies amabilis Dougl. ex
J. Forbes (Stenberg et al. 1998), the simplified method was
found to yield a conservative estimate, i.e., it underestimated
SLIs by 15% on average, probably because shoots tend to be
oriented so as to increase their PAR interception. This is possi-
ble in a nonisotropic radiation field. Comparison between the
calculated, true SLIs and the value estimated by the simplified
method gives a measure of the gain in PAR interception as a
result of a favorable shoot angle.

Discussion

Assessment of photosynthetic productivity and resource-use

efficiency in plant canopies requires accurate estimates of the
distribution of intercepted PAR by the foliage elements. Tech-
nical difficulties in measuring this distribution arise because
of the large temporal and spatial variations in irradiance that
occur within a canopy. Moreover, and more importantly, mea-
surements are of transmitted rather than intercepted PAR. Be-
cause coniferous shoots in general are not structurally similar
throughout the canopy (e.g., sun shoots and shade shoots), the
efficiency with which they intercept the available (transmit-
ted) PAR varies. As a result, the amount of PAR intercepted
by shoots along the light gradient in the canopy is not directly
proportional to the available PAR at the same locations. This
realization has led to a deeper understanding of the role of
structural adjustment as a mechanism for enhanced photosyn-
thetic performance of shade foliage (shade acclimation) in co-
nifers (Stenberg 1996, Sprugel et al. 1996). For example, in
recent studies on Picea abies (L.) Karst and Abies amabilis
(Stenberg et al. 1998, 1999; see also Sprugel et al. 1996) it was
found that the increase in STAR (SPAR) with shading allowed
shade shoots to intercept about twice as much PAR per unit
needle area as sun shoots would intercept in similar radiation
conditions.

Based on model terminology, the observed pattern means
that the extinction coefficient increases as transmitted PAR
decreases. This pattern is not captured by the classical canopy
radiation models, which are built on the assumption of statisti-
cally independent leaf locations, described by a probability
density function (e.g., the Poisson distribution) (Ross 1970,
Mann et al. 1977, Norman 1980). In these models, the extinc-
tion coefficient is equivalent to the mean projection of unit leaf
area, and varies only with leaf orientation and direction of ra-
diation. Statistical dependency (nonrandomness) in leaf dis-
persion, e.g., deviations toward clumped or regular distribu-
tions, is a classical issue in radiation models (cf. Nilson 1971).
For example, in many models, leaves are clumped into tree
crowns, which may be regularly spaced, and the classical ran-
dom theory is applied to individual crowns (e.g., Norman and
Welles 1983). However, the clumping of needles on shoots
cannot be treated by this approach because a statistical proba-
bility density function is not relevant for describing the spatial
distribution of needles within the small region occupied by a
shoot. The whole concept of leaf area density starts to collapse
when smaller and smaller regions are considered (see an ana-
log in Mandelbrot 1983, p. 8). This creates the well known
problem in radiative transfer theory of how to handle small-
scale structures (e.g., Knyazikhin et al. 1998).

In our model approach, we define the shoot as the basic unit,
and describe crown structure in terms of shoot structure, and
the angular and spatial distribution of shoots (Stenberg et al.
1993). The extinction coefficient then corresponds to mean
STAR, averaged with respect to the directional distribution of
PAR at the considered location. In addition to the effect of
needle angles, it includes a factor (< 1) accounting for self-
shading of shoots. Similar approaches have been used by, e.g.,
Smith et al. (1993), Cescatti (1998), and Nilson (1999). How-
ever, because of a lack of data, the extinction coefficient has

TREE PHYSIOLOGY ONLINE at http://heronpublishing.com

LIGHT INTERCEPTION BY A CONIFER SHOOT 801



commonly been assumed to be constant throughout the can-
opy (spatially invariant). We emphasize that a vital part of
shoot-level models is that they allow inclusion of the dynamic
interaction among shoot structure, within-canopy PAR re-
gime, and leaf area development. To this end, information is
needed on how differences in shoot structure modify the gradi-
ents of PAR within the canopy and, conversely, how the avail-
ability of light influences shoot structure.

The methodology described in this paper forms part of our
long-term goal to develop a proper characterization of the
PAR regime within coniferous canopies. The method offers an
operational means to estimate the PAR intercepted by shoots
during any specified time period. Calculation of intercepted
PAR is not by itself sufficient for predicting canopy photosyn-
thesis without consideration of other environmental variables.
For example, a detailed analysis of shoot photosynthesis re-
quires estimates of the temporal distributions of irradiance on
the needle area of the shoots (Stenberg et al. 2001, this issue).
However, the method provides the necessary data for shoot-
level models, which we believe are best suited to capture the
effect of small-scale structure on the spatial distribution of
PAR. Moreover, the method can be used to derive quantitative
relationships among available PAR, shoot structure, and inter-
cepted PAR, thus providing a tool for including structural ac-
climation as an active feedback mechanism in long-term simu-
lations.

At present, accuracy in the measurement of canopy gap
fractions (transmission) and shoot silhouette area (SSA) is en-
sured by high-resolution digital cameras. Also, the estimates
of SSA in unmeasured directions, obtained by trigonometric
interpolation, are believed to be accurate. Uncertainty remains
regarding a realistic description of the above-canopy radiation
field. The simulated directional distribution of above-canopy
radiation was based on two assumptions: first, that cloud cover
reduces direct radiation similarly in all directions; and second,
that the directional distribution of incoming diffuse radiation
is uniform. We believe that these assumptions are good for
longer (month-scale) time periods, when the random effects of
clouds average out. Producing the distribution for a short time
period (e.g., a single day), would require knowledge or as-
sumptions about the nature of cloudiness during the time pe-
riod considered.
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Summary We studied the effects of variation in shoot struc-
ture and needle morphology on the distributions of light and
nitrogen within a Pacific silver fir (Abies amabilis (Dougl.)
Forbes) canopy. Specifically, we investigated the role of mor-
phological shade acclimation in the determination of resource
use efficiency, which is claimed to be optimal when the distri-
bution of nitrogen within the canopy is directly proportional to
the distribution of intercepted photosynthetically active radia-
tion (PAR). Shoots were collected from different heights in the
crowns of trees representing four different size classes. A new
method was developed to estimate seasonal light interceptance
(SLI, intercepted PAR per unit needle area) of the shoots using
a model for the directional distribution of above-canopy PAR,
measurements of shoot silhouette area and canopy gap fraction
in different directions. The ratio SLI/SLIo, where the reference
value SLIo represents the seasonal light interceptance of a
spherical surface at the shoot location, was used to quantify the
efficiency of light capture by a shoot. The ratio SLI/SLIo

doubled from the top to the bottom of the canopy, mainly as a
result of smaller internal shading in shade shoots than in sun
shoots. Increased light-capturing efficiency of shade shoots
implies that the difference in intercepted light by sun shoots
versus shade shoots is much less than the decrease in available
light from the upper to the lower canopy. For example,  SLI of
the five most sunlit shoots was only about 20 times greater than
the SLI of the five most shaded shoots, whereas SLIo was 40
times greater for sun shoots than for shade shoots. Nitrogen
content per unit needle area was about three times higher in sun
needles than in shade needles. This variation, however, was not
enough to produce proportionality between the amounts of
nitrogen and intercepted PAR throughout the canopy.

Keywords: morphological acclimation, Pacific silver fir, re-
source use efficiency.

Introduction

Several theories exist on how structure and function in plant
canopies should be organized to optimize the utilization of

resources such as light, water, and nutrients (Verhagen et al.
1963, Kuroiwa 1970, Horn 1971, Mooney and Gulmon 1979,
Field 1983, Bloom et al. 1985, Evans 1989, Farquhar 1989,
Chen et al. 1993). These theories produce different solutions
depending on the assumptions and constraints the optimization
is based on. 

Early theories showed that if the parameters of the light
response curve do not vary with position in the canopy, photo-
synthesis is optimized if light interception per unit leaf area is
constant throughout the canopy (Verhagen et al. 1963). This
optimization is generally unachievable because upper leaves
inevitably shade lower leaves, although it can be counteracted
to some extent by differences in leaf angle (Miller 1967,
Kuroiwa 1970, Horn 1971) and shoot structure (Sprugel 1989,
Leverenz and Hinckley 1990, Sprugel et al. 1996, Stenberg
1996).

Other theories are based on the observation that the photo-
synthetic capacity of leaves (expressed as maximum CO2 up-
take per unit mass) is often proportional to their nitrogen
concentration (Field and Mooney 1986). Given this, it can be
shown that resource use is optimized when the distribution of
nitrogen within the canopy is directly proportional to the
distribution of intercepted PAR, when both are expressed on an
area basis (e.g., Farquhar 1989). Many plant canopies have
now been studied from this perspective (Field 1983, Hirose et
al. 1989, Hollinger 1989, Ellsworth and Reich 1993, Evans
1993, Kull and Niinemets 1993), and in nearly all cases, it has
been found that nitrogen per unit leaf area varies in parallel
with light availability, although it rarely decreases sharply
enough to remain proportional to light at lower levels of the
canopy. However, these theories do not specify the physiologi-
cal or morphological mechanism by which an optimal distri-
bution is obtained, and structural variations above the level of
the leaf have rarely been considered. Many common morpho-
logical and physiological adaptations to shade are in general
agreement with an efficient use of resources, but quantitative
estimates of their combined effects on, for example, canopy
photosynthesis, are largely missing. 
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Acclimation responses causing variation in the physiology
and morphology of leaves in different light environments
greatly increase the complexity, but also the flexibility, of
resource use optimization. Morphological adaptations in coni-
fers include increases in specific needle area (SNA) and the
ratio of shoot silhouette area to needle area with shading (e.g.,
Leverenz and Hinckley 1990, Niinemets and Kull 1995, Sten-
berg et al. 1995, Sprugel et al. 1996). The ratio of shoot
silhouette area to needle area is referred to as STAR or SPAR,
depending on whether total needle surface area or projected
needle area is used in the denominator, respectively. The in-
crease in STAR (SPAR) at lower irradiances reduces the vari-
ation in intercepted light per unit needle area of shoots in
different parts of the canopy (Stenberg 1996). The simultane-
ous increase in SNA further diminishes the differences in light
interception per unit needle mass or unit nitrogen.

These adaptations are in qualitative agreement with the
theory by Farquhar (1989) stating that resource use is opti-
mized when the distribution of photosynthetic capacity and
nitrogen is proportional to the distribution of intercepted light
(see Sprugel et al. 1996). However, to estimate the effects of
acclimation in a canopy it is necessary to quantify the degree
to which changes in SNA and SPAR modify the distribution of
light and nitrogen. To do this, variations in nitrogen concentra-
tion, SNA and SPAR along the entire light gradient in the
canopy must be described. The effects of variations in SPAR
and SNA on the distribution of intercepted light within a
canopy must also be quantified. It is a complicated problem
because leaf and shoot morphology do not solely affect the
photosynthetic properties of the leaf (shoot) itself, but change
the whole profile of light in the canopy. In addition, because
the shoot silhouette area varies with the direction of radiation
(sun angle), it is not obvious how best to quantify light inter-
ception by a coniferous shoot. 

We examined changes in SNA, SPAR and nitrogen concen-
tration in Pacific silver fir (Abies amabilis (Dougl.) Forbes)
with shading, and analyzed the implications of these changes
on the distribution and utilization of light and nitrogen within
the canopy. Special efforts were made to produce accurate
estimates of seasonal light interception by the shoots, based on
measurements of canopy transmittance and shoot silhouette
area from many different angles. 

Material and methods

In situ measurements

Measurements were made in a 37-year-old A. amabilis stand
at 1200 m elevation in the Findley Lake research area about
65 km southeast of Seattle, WA (47°20′ N, 121°35′ W). We
collected 47 current-year shoots (30 in 1994 and 17 in 1995)
from the tips of branches at different heights in the crowns of
eight trees. Tree height ranged from 2.4 to 8.6 m, and shoots
were collected from two trees of each of the size classes:
suppressed (< 4 m), intermediate (4--6 m), codominant
(6--8 m), and dominant (≥ 8 m). Data were split into two
categories, one comprising shoots from codominant and domi-

nant trees (29 shoots), and the other comprising shoots from
suppressed and intermediate trees (18 shoots). 

Shoot position and orientation were recorded before remov-
ing the shoots. The orientation of a shoot was determined by
the inclination and azimuth of the shoot axis, and the shoot’s
rotation angle to the vertical. To define the rotation angle, we
picture a vector (r) perpendicular to the hypothetical plane
dividing the shoot into upper and lower sides, and pointing
toward the shoot’s upper side. We measured the angle of r to
the vertical plane through the shoot axis, and attached to it a
positive or negative sign depending on the opening direction.
The positive opening direction of r is clockwise when the tip
of the shoot is pointing toward the viewer.

After the sample was collected, we took a hemispherical
photograph at each shoot location with a Nikon 8-mm lens and
Kodachrome 200 film. These photographs were analyzed with
the CANOPY hemispherical photo analysis program (Rich
1989). The program provided the fraction of gaps separately
for 18 inclination bands (width 5°) and eight azimuths (width
45°) (144 different sky sections) as well as total canopy open-
ness, defined as the unweighted fraction of open sky (indirect
site factor according to Anderson (1964) and Rich (1989)). 

Mathematically, canopy openness is defined as:

OPENNESS = 1
2π ∫

Ω
gf(ω)dω, (1)

where Ω represents the upper hemisphere and gf(ω) the gap
fraction in the direction ω of the sky.

Measurement of shoot morphology and silhouette area

The directional distribution of shoot silhouette area (SSA) was
produced by measuring SSA photographically in different
view directions (φ, γ) and constructing spline functions to
interpolate smoothly between the measured values (bicubic
spline interpolation; see Press et al. 1992). The silhouette areas
were measured with a digital camera attached to an image
analysis system (OPTIMAS, BioScan Inc., Edmonds, WA).
The focal length of the lens (AF Nikkor) was 180 mm, and the
distance between shoot and camera was 7.0 m for long shoots
and 4.2 m for small shoots. The maximum view angle of the
shoot was 1.5°. The system was calibrated according to the
manufacturer’s specifications for each measurement distance.

Following earlier practice (Oker-Blom and Smolander
1988), we define the inclination angle (φ) as the angle of the
shoot axis to the plane of projection. Thus, for φ = 0°, the shoot
axis is perpendicular to the direction of view (camera), and for
φ = ± 90°, the shoot axis is parallel to the direction of view. The
value of φ is positive when the branch tip is pointing toward
the viewer, and negative when the branch tip is pointing away
from the viewer. The rotation angle (γ) is defined as the angle
between the vector (r) and the plane going through the shoot
axis and the view direction. Thus, when γ = 0°, the shoot’s
upper side is facing the viewer, and when γ = ± 90°, the shoot
is viewed from the side (see Figure 1). 

A set of measurements was made where the rotation angle
(γ) was held fixed and the inclination angle (φ) was changed in
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equal steps. This procedure was then repeated after changing
the rotating angle in equal steps. In the 1994 measurements,
the inclination and rotation angles were both changed in steps
of 45°, giving a total of 16 silhouette areas measured per shoot.
In 1995, the inclination angle was changed in steps of 15°, and
the rotation angle was changed in steps of 30°, giving 72
silhouette areas measured per shoot. Interpolation surfaces for
SSA of a ‘‘sun’’ shoot (canopy openness = 0.746) and a ‘‘shade’’
shoot (canopy openness = 0.130) are shown in Figure 1.

After measurement of shoot silhouette area, needles were
detached from the shoot and the projected area of all needles
on the shoot (PNAs) was measured photographically with the
OPTIMAS-system, equipped with a lens with a focal length of
50 mm (see Kershaw and Larsen 1992). The silhouette to
projected leaf area ratio (SPAR) was obtained by dividing SSA
by PNAs. The ratio of SSA(0,0) to PNAs is referred to as
SPARmax, although SSA does not necessarily attain its maxi-
mum value at φ = γ = 0 (Figure 1). The mean of SSA taken over
all directions of the sphere (SSA

____
) was obtained by calculating

the mean of the spline function constructed to describe SSA in
all directions. The value of SSA

____
 divided by PNAs yields the

spherically averaged silhouette area ratio (SPAR
_____

).
We also measured shoot length, number of needles per

shoot, mean needle length and thickness, and needle dry
weight (48 h at 70 °C). The nitrogen content of needles was
measured with a LECO CHN-900 analyzer (LECO Co., St.
Joseph, MI) (Table 1). 

Simulation of above-canopy and within-canopy distributions
of PAR

Incoming PAR was simulated by a method similar to that
described by Stenberg (1996), but taking into account the
azimuthal direction of the sun also. The period from June 1 to
October 1 was chosen to represent the growing season at the
study site. Input assumptions and parameters for the simula-
tion model were as follows: (1) the amount of PAR available
at the top of the atmosphere (the PAR equivalent of the solar
constant) was assigned the value of 600 W m−2 (Weiss and
Norman 1985); (2) it was assumed that 61% of the PAR
incident on a horizontal surface at the top of the atmosphere is
received at the ground (Western Solar Utilization Network
1980); (3) of the penetrated PAR, 55% entered as direct radia-

tion, and 45% as diffuse sky radiation (Fritschen and Hsia
1979)  (Assumptions 1--3 fixed the seasonal amount of incom-
ing PAR per unit horizontal surface (Qh) at 1203 MJ m−2, of
which the direct and diffuse components were 662 MJ m−2 and
541 MJ m−2, respectively); (4) the directional distribution of
sunlight was produced by assuming that clear sky conditions
prevailed throughout the season, and transmittance of the at-
mosphere to direct radiation was set to 0.73 in the zenith
direction, and was corrected for atmospheric path length. The
distribution obtained in this way was then multiplied by a
factor (< 1) to give the ‘‘known’’ amount of direct PAR; and (5)
the directional distribution of diffuse radiation was assumed to
be isotropic. 

The simulated distribution of PAR incident from different
sections of the sky is shown in Figure 2. Total incoming PAR,
expressed as the energy received per unit cross-sectional area
of a spherical surface (Qo), was 2109 MJ m−2. The directional
distribution of PAR around a shoot (Figure 3A) was obtained
by multiplying each entry in the sky energy matrix (Figure 2A)
by the corresponding entry in the hemispherical matrix (Fig-
ure 3B), containing the gap fractions in the 144 different sec-
tions of the sky.

Table 1. Structural characteristics and estimates of the light environ-
ment of the sample shoots. 

Characteristic Range Mean

Shoot length (cm) 2.2−15.7 7.7
Needle density (cm−1) 8.5−28 18.1
Needle area per shoot (cm2) 3.4−111.6 40.3
Needle thickness (mm) 0.25−0.88 0.54
Needle length (mm) 8−26 17.9
SNA (cm2 g−1) 33.2−122.5 62.3
N concentration (%) 0.56−1.4 0.95
N content (mg cm−2) 0.084−0.354 0.174
SPAR
_____

0.262−0.561 0.359
SPARmax 0.337−0.993 0.556
SSA
____

/needle dry weight (cm2 g−1) 9.05−51.75 23.96
Openness 0.006−0.82 0.313
SLI (kJ cm−2) 0.94−59.5 23.7
SLIo (kJ cm−2) 1.88−187 68.8
SLI/SLIo 0.252−0.764 0.414

Figure 1. Directional distribu-
tion of SSA (cm2) of a sun
shoot and a shade shoot. The
shoot is assumed to lie on its
flat side, and the branch tip
points to the positive φ-axis.
The � denotes a measured
value. Note the different scales
on the vertical axes for the sun
(left) and shade shoots.
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Figure 2. Simulated distributions of above-canopy PAR at the study site during the growing season. A. Sky energy matrix----the hemisphere is
divided in 144 (18 × 8) sections, and the value (color) assigned to each section is the radiant energy per unit area incident from unit solid angle
around that direction of the sky. Values shown on the scale correspond to the upper limits of the intervals. B. Division of direct (�) and diffuse
(�) PAR into inclination bands.

Figure 3. A. Canopy openness (digitized photographs), presented as a hemispherical matrix, at the location of a sun shoot (top left panel) and a
shade shoot (top right panel). B. Hemispherical distribution of PAR at the shoot locations. Note the different scales for the top and bottom panels.
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Estimation of light interception by the shoots

We define the seasonal light interceptance (SLI) of a shoot as
the amount of PAR intercepted per unit projected leaf area of
the shoot (PNAs) during the growing season. Formally:

SLI = ∫ q(ω)g
Ω

f(ω)SPAR(φω, γω)dω, (2)

where q(ω) is the seasonal amount of radiant energy (per unit
area and solid angle) incident from the direction ω of the sky
(see Figure 2A). The inclination angle (φω) and rotation angle
(γω) (Equation 2) with respect to a given view direction (ω)
vary with shoot orientation. 

Equation 2 was numerically integrated by summation over
the sky sections (i = 1, ..., 144). The inclination (φi) and rotation
(γi) angles corresponding to the direction from the midpoint of
each section (i) were calculated based on the recorded infor-
mation of the shoot’s natural orientation in the canopy. Tech-
nically, this was done by transformation of the coordinate
system (see Figure 1). The (interpolated) value of SSA(φi, γi)
was then assigned to section (i).

The efficiency of light capture by a shoot was quantified by
comparing SLI to the amount of PAR received per unit cross-
sectional area of a spherical surface at the same location
(SLIo):

SLIo = ∫ q(ω)gf(ω)dω
Ω

. (3)

The SLIo can be interpreted as a measure of the amount of
available PAR at the shoot location, whereas SLI is the actual
PAR intercepted by the shoot. We used the ratio of SLI to SLIo

to compare the relative efficiency of light capture by shoots in
different parts of the canopy.

From Equations 2 and 3, it follows that if there is no direc-
tional variation in SSA (i.e., SPAR equals SPAR

_____
 in all direc-

tions), or if the shoot is surrounded by an isotropic radiation
field (q(ω)gf(ω) is constant), then SLI/SLIo = SPAR

_____
.

Results

The radiation regime

Because the directional distribution of diffuse sky radiation
was assumed to be isotropic, differences in the amount of
radiant energy from different sections of the sky result from the
direct solar component (Figure 2A). The highest value (bright-
est spot) is found in the section containing the position of the
sun at its maximal elevation (≈ 67° at the given latitude). Only
diffuse radiation is incident from inclination angles above 67°.
The direct component causes a shift in the distribution toward
higher inclination angles (Figure 2B). The median angle, de-
fined so that equal parts (50%) of the total radiation are re-
ceived from smaller and larger inclination angles, respectively,
was 37.6°. For comparison, the median angle of isotropic
radiation is 30°.

The angular distribution of PAR becomes narrower and its
center (the median angle) moves closer to the zenith with depth
in the canopy (Figure 4), because near-horizontal angles get
rapidly blocked (see Figure 3A). However, even in the lower
canopy, the radiation was incident from many different direc-
tions (Figures 3B and 4A).

Shoot and needle structure versus canopy openness

Interpolation surfaces for SSA were fairly symmetrical with
respect to the γ-axis but somewhat skewed in the φ-direction
(Figure 1). In sun shoots, where needles point upward, the
shoot silhouette area is significantly larger when the shoot is
viewed from the base toward the tip (i.e., for negative values
of φ). Accordingly, maximum SSA was generally not obtained
at φ = 0°, but at slightly negative φ-values. Shade shoots are
flatter than sun shoots, which implies a larger variation in SSA
along the γ-axis. The sun shoot depicted in Figure 1 had
SPARmax = 0.422 and SPAR

_____
 = 0.292. Values for the shade shoot

were SPARmax = 0.644 and SPAR
_____

 = 0.412. 
Both SPAR

_____
 and SPARmax decreased with canopy openness,

which ranged from 0.006 to 0.82 (Figure 5, Table 1). Moderate
shading had only a small effect on SPAR, whereas a sharp
increase occurred in deeper shade (openness ≈ 0--25%). There

Figure 4. A. Energy of PAR during
growing season incident from different
inclination angles at the locations of the
sun shoot (�) and shade shoot (�). B.
The median angle of incident radiation
for all sample shoots plotted against
canopy openness. The � denotes the me-
dian angle (36.6°) of above-canopy ra-
diation (canopy openness = 1).
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was a strong linear correlation (r2 = 0.83) between SPARmax

and SPAR
_____

 (Figure 5B); however, SPARmax increased relatively
more with shading than did SPAR

_____
. Mean SPARmax for the five

most sunlit shoots (mean openness = 0.784) was 0.395, and for
the five most shaded shoots (mean openness = 0.020), it was
0.737, i.e., 1.86 times greater. The corresponding values for
SPAR
_____

 were 0.275 and 0.424, giving a ratio of 1.54. 
Needle thickness increased and specific needle area (SNA)

decreased with canopy openness (Figure 6). As a result of
changes in SPAR

_____
 (Figure 5) and SNA, mean shoot silhouette

area per unit needle mass dry weight (ndw) SSA
____

/ndw (= the
product of SPAR

_____
 and SNA) was up to five times higher for

shade shoots than for sun shoots (Figure 6C).
Needle nitrogen concentration increased with canopy open-

ness in the dominant and codominant trees, but in the sup-
pressed and intermediate trees, this relationship broke down
(Figure 7A). The highest nitrogen concentrations were found
in needles from suppressed trees. As a result, there was no
correlation between nitrogen concentration and canopy open-
ness for the data as a whole (all trees). A strong positive
correlation, on the other hand, existed between nitrogen con-
tent per unit projected needle area and canopy openness (Fig-
ure 7B). 

Efficiency of light capture

The SLI/SLIo ratio varied between 0.25 to 0.76, and showed a
strong negative nonlinear correlation (r2 = 0.67) with canopy

openness (Figure 8). The lower curve depicted in Figure 8
shows the corresponding value of SPAR

_____
. There was a strong

linear correlation (r2 = 0.99) between SLI/SLIo and SPAR
_____

, but
SLI/SLIo was, on average, 15% higher. If there was no direc-
tional variation in either SPAR or in the radiation field sur-
rounding the shoot, SLI/SLIo would be equal to SPAR

_____
. The

difference may be interpreted as the increase in SLI caused by
a favorable orientation of the shoot in relation to the actual
radiation field at its location. 

Distribution of light and nitrogen

Nitrogen content was linearly related to SLI (Figure 9), but the
regression line had a positive intercept because the ratio of
nitrogen to intercepted PAR increased toward the bottom of the
canopy. Although (as a result of the changes in shoot geome-
try) the total range of variation in SLI (0.94 to 59.5 kJ cm−2)
was considerably less than the total range in canopy openness,
it remained many times greater than the variation in nitrogen
content (0.084 to 0.354 mg cm−2). Consequently, proportion-
ality between these two variables could not be expected. For
the whole data, there was a more than twentyfold variation
(38.8 to 980.8 mg kJ−1) in the ratio of nitrogen to intercepted
PAR. The largest ratios and most of the variation occurred in
the lower canopy. For shoots situated at a canopy openness
above 30%, the range of variation in the amount of nitrogen
per unit of intercepted PAR was reduced to between 38.8 and

Figure 5. A. Relationship between
SPAR
_____

 and canopy openness. B. Rela-
tionship between SPARmax and SPAR

_____
.

Symbols: dominant and codominant
trees (tree height > 6 m) are represented
by �; intermediate and suppressed trees
(tree height < 6 m) by �. Regressions
fitted to whole data: A. r2 = 0.59 and B.
r2 = 0.83. 

Figure 6. Needle thickness, SNA,
and SSA

____
/ndw as a function of can-

opy openness (symbols are as in
Figure 5). Regressions: A. r2 =
0.81; B. r2 = 0.82; and C. r2 =
0.82.
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72.0 mg kJ−1, and no correlation (r2 = 0.004) of the ratio with
canopy openness remained.

Discussion

Shade acclimation and light interception efficiency

The ratio SLI/SLIo, which was used to quantify the efficiency
of light capture by shoots in the prevailing light conditions,
was more than twice as high in shade shoots as in sun shoots
(Figure 8). The increase in SLI/SLIo with shading is consistent
with an efficient utilization of light by the canopy as a whole.
Efficient light capture is not necessarily useful at the top of the
canopy, where there is more than enough light available to
maintain high rates of photosynthesis. On the contrary, low
light-capturing efficiency of sun shoots may be advantageous
because it implies a reduced risk of light saturation and smaller

transpiration demand (because the intercepted light is distrib-
uted over a large leaf area). Moreover, it enables more light to
penetrate to deeper canopy layers, thus improving the light
conditions of shade shoots. This, in combination with the high
light-capturing efficiency of shade shoots, considerably evens
out the vertical gradient in intercepted light (Stenberg 1996). 

The increase in SLI/SLIo with shading was mainly achieved
by smaller within-shoot shading (larger SPAR

_____
) in shade shoots

than in sun shoots (Figure 5). In addition, the combined effects
of shoot orientation and variation in SSA acted to increase SLI
of a shoot in its prevailing (non-isotropic) light conditions. The
SLI was, on average, about 15% higher than would be pre-
dicted simply by the increase in SPAR

_____
 (Figure 8), indicating a

tendency of the shoots to be oriented so as to increase their
light interception. However, the increase in SLI caused by a
favorable shoot orientation was modest and not appreciably
higher for shade shoots than for sun shoots. This is because

Figure 7. A. Relationship between ni-
trogen concentration and canopy open-
ness. Thick line = all trees (r2 =
0.002); thin line = dominant and co-
dominant trees (r2 = 0.52). B. Relation-
ship between nitrogen content and
canopy openness (r2 = 0.80). Symbols:
dominant and codominant trees (tree
height > 6 m) are represented by �; in-
termediate and suppressed trees (tree
height < 6 m) by �.

Figure 8. Ratio of SLI to SLIo as a function of canopy openness. The
lower curve (thin line) shows the value of SPAR

_____
 (Figure 5A). Sym-

bols: dominant and codominant trees (tree height > 6 m) are repre-
sented by �; intermediate and suppressed trees (tree height < 6 m)
by �.

Figure 9. Relationship between nitrogen content and SLI. The regres-
sion line is: y = 0.0032x + 0.097; r2 = 0.78. Symbols: dominant and
codominant trees (tree height > 6 m) are represented by �; intermedi-
ate and suppressed trees (tree height < 6 m) by �.
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even in the lower canopy, the angular distribution of PAR is not
concentrated around one particular direction (Figures 3 and 4).
Thus, the ‘‘optimal solution,’’ represented by a flat shoot turn-
ing its maximal silhouette area perpendicular to the (one)
direction of radiation, cannot be realized. 

Differences in needle shape cause some ambiguity in the
interpretation of SLI, when SLI is defined on a projected
needle area basis. Because sun needles are thicker than shade
needles (Figure 6), they have a larger ratio of total to projected
area. Consequently, the difference in SLI/SLIo between sun
and shade shoots would have been larger if SLI had been
expressed on a total needle area basis. The same is true, only
to a much larger extent, when the efficiency of light intercep-
tion is expressed on a needle mass basis. Because of the
increase in SNA with shading, mean silhouette area per unit
needle dry weight (SSA

____
/ndw) was up to five times higher in

shade shoots than in sun shoots (Figure 6). 

Relation between nitrogen and intercepted light 

Changes in shoot geometry brought about a considerable flat-
tening of the vertical gradient of light interception per unit
needle area (SLI). The increase in specific needle area (SNA)
with shading (Figure 6) further decreased the differences in
light interception by sun and shade shoots, when expressed per
unit needle mass. However, because mean nitrogen concentra-
tion was similar in shade needles and sun needles (Figure 7),
the amount of nitrogen per unit intercepted PAR was much
higher at the bottom of the canopy than at the top of the canopy
(Figure 9). 

Conclusions

To develop and test theories on the optimal use of resources,
we need accurate estimates of how these resources are allo-
cated in real canopies. It has proved particularly problematic
to measure the amount of intercepted PAR by leaves at differ-
ent positions in the canopy. Technical difficulties arise from the
great temporal and spatial variation of irradiance that occurs in
the canopy. A far more serious problem, however, is the lack
of correspondence between PAR measured with artificial sur-
faces (e.g., flat horizontally lying sensors) and the distribution
of PAR on the actual needle surface. As shown in this study,
within-shoot shading and variation in leaf angle and shoot
shape greatly modify the gradient of light interception within
the canopy.

To estimate quantitatively light interception by a shoot, the
directional distributions of SSA and PAR incident on the shoot
must be known. The directional distribution of above-canopy
PAR at any given location can be produced in a straightforward
manner. It can then be combined with hemispherical photo-
graphs (or measurements with the LAI-2000 plant canopy
analyzer; Li-Cor, Inc., Lincoln, NE) to give the directional
distribution of PAR and an estimate of SLIo at any desired
(shoot) location in the canopy.

The method applied here to produce the directional distribu-
tion of shoot silhouette area is too cumbersome for standard
use. However, the interpolation surfaces (Figure 1) constructed

in this exercise indicate that there is a high degree of regularity
in the shoot shape, which was also supported by the strong
correlation between SPAR

_____
 and SPARmax (Figure 5B). It seems

reasonable to believe, therefore, that the directional distribu-
tion of shoot silhouette area could be estimated fairly accu-
rately using a shape function based on measurements in a few
specified directions only (Stenberg 1996). This would offer an
operational method for the determination of seasonal light
interception by shoots at different positions in the canopy, not
involving any measurements of irradiance.

A close correlation was found between SPAR
_____

 and the light-
capturing efficiency (SLI/SLIo). The SLI/SLIo was higher than
predicted by SPAR

_____
 alone (Figure 8), but the gradients were

similar. Thus, if actual values of SLI are not needed, SPAR
_____

combined with the radiation regime may provide a good esti-
mate of the gradient of light interception (relative difference at
top and bottom of the canopy). To simplify further, the close
dependency between SPAR

_____
 and SPARmax makes it possible to

estimate SPAR
_____

 based on measurements of SPARmax.
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Summary We investigated effects of nutrient availability on
shoot structure and light-interception efficiency based on data
from control (C) and irrigated + fertilized (IL) trees of Norway
spruce (Picea abies (L.) Karst.). The sampling of 1-year-old
shoots was designed to cover the variation in canopy exposure
within the live crown zone, where current-year shoots were
still found. Canopy openness was used as a measure of light
availability at the shoot’s position. Openness values for the
sample shoots ranged from 0.02 to 0.77 on the IL plot, and from
0.10 to 0.96 on the C plot.

Among needle dimensions, needle width increased most
with canopy openness. At fixed canopy openness, needle
width was larger, and the ratio of needle thickness to width
was smaller in IL trees than in C trees. Specific needle area
(SNA) and the ratio of shoot silhouette area to total needle area
(STAR) decreased with canopy openness, so that the com-
bined effect was a threefold decrease in the ratio of shoot sil-
houette area to unit dry mass (SMR = STAR × SNA) along the
studied range of openness values. This means that the light-in-
terception efficiency of shoots per unit needle dry mass was
three times higher for the most shaded shoots than for sun
shoots. A test of the effect of fertilization on the relationships
of SNA, STAR and SMR indicated statistically significant dif-
ferences in both slope and intercept for SNA and STAR, and in
the intercept for SMR. However, the differences partly cancel-
led each other so that, at medium values of canopy openness,
differences between treatments in predicted SNA, STAR and
SMR were small. At 0.5 canopy openness, predicted STAR of
IL shoots was 6.1% larger than STAR of C shoots, but SMR of
IL shoots was 10% smaller than that of C shoots. The results
suggest that light-interception efficiency per unit needle area
or mass of the shoots is not greatly affected by fertilization.

Keywords: LAI, nitrogen, Norway spruce, structural acclima-
tion.

Introduction

The increase in stand productivity in response to fertilization
can be attributed to an increase in photosynthetic performance
and faster accumulation of leaf area index (LAI) (e.g., Mc-
Murtrie and Wolf 1983, Linder and Rook 1984). These factors
can be analyzed separately, although they are in dynamic in-
teraction, because the production of new foliage is part of the
total canopy photosynthetic production. Leaf area can increase
only as long as carbon uptake in photosynthesis is sufficient to
meet the maintenance and construction costs of new leaves
and associated woody structures and the export of carbon to
developing buds (Givnish 1988, Schoettle and Fahey 1994).
Net photosynthetic rate of a leaf in a given light environment
is determined by its efficiency in capturing available pho-
tosynthetically active radiation (PAR, light-interception effi-
ciency) and converting it to photosynthates (conversion effi-
ciency) (Stenberg et al. 2001). Structural adjustment that
changes leaf area display is the only available mechanism to
allocate the incoming photons in some desired fashion onto
leaf surfaces, and plasticity limits the extent to which different
characteristics may be adjusted. It is known that morphologi-
cal characteristics of needles and shoots change in response to
shading (Del Rio and Berg 1979, Hager and Sterba 1985,
Leverenz and Hinckley 1990, Schoettle and Smith 1991,
Niinemets and Kull 1995a, 1995b, Sprugel et al. 1996), but the
role of nutrients in these responses is not well understood. To
assess the effect of nutrient availability on structural shade ac-
climation, we need to quantify and compare light-interception
efficiencies along the naturally occurring light gradient within
stands of different fertility.

Interception of PAR per unit needle area of a shoot situated
in a given light environment is directly proportional to its
shoot silhouette to total needle area ratio (STAR) (Stenberg et
al. 2001). Because mean STAR (STAR; Oker-Blom and Smo-
lander 1988) is closely related to the light extinction coeffi-
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cient, STAR modifies the vertical gradient of PAR, thus pro-
viding a useful tool for analyzing the dynamic interaction
between canopy structure and radiation regime. As a comple-
ment to STAR, we used the ratio of shoot silhouette area to
needle dry mass (SMR) to quantify light-interception effi-
ciency per unit dry mass invested in foliage. We determined
the relationships of STAR and SMR with canopy openness in
Norway spruce (Picea abies (L.) Karst.), and studied the ef-
fects of fertilization on these relationships.

Materials and methods

Measurements were made in the Norway spruce experimental
stand situated at the Flakaliden research area (64°07′ N,
19°27′ E, 310 m a.s.l.) in Sweden. The stand was planted with
4-year-old seedlings in 1963, and the nutrient optimization ex-
periment was established in 1987. The treatments are applied
to plots of 50 × 50 m. Two treatments were used in this study:
(1) a control (C) plot, and (2) an irrigated + fertilized (IL) plot,
in which a complete nutrient solution has been injected into
the irrigation water daily during the growing season constantly
since 1987 (see Linder (1995) for further details on the experi-
mental design). The development of the two canopies, since
the start of the fertilization regime, has resulted in remarkable
differences in tree size and LAI (see Table 1; S. Linder, Swed-
ish University of Agricultural Sciences, personal communica-
tion), providing a setup for quantifying changes in needle and
shoot structure with shading and for comparing those re-
sponses between fertilized and unfertilized trees.

In situ measurements

The data consisted of structural measurements taken in mid-
July of 1995, 1996, 1997 and 1998. Results from 1997 have
been reported previously by Stenberg et al. (1999). One-year-
old shoots were selected from different canopy positions
within the two experimental plots, representing two regimes
of nitrogen availability. Sampling was designed to cover the
range in canopy openness values within the crown zone,
where current-year shoots could still be found. In practice,
each year, two to four healthy trees from each of the two plots
were selected and six to 16 shoots were sampled from different
heights along the length of the living crown. This strategy en-
sured that the sampling (exposure) range was as wide as possi-

ble even without a priori knowledge about the distribution of
openness values within the canopies and at the specific loca-
tions of the shoots. Nevertheless, maximum values of canopy
openness for the sample shoots were somewhat lower on the
IL plot, because the tops of the crowns were inaccessible with
the ladder that was available. Minimum openness values were
consistently lower on the IL plot than on the C plot.

Canopy openness, defined as the unweighted fraction of
unobscured sky (Sprugel et al. 1996), was used as a measure of
light availability at the shoot’s position. A measurement with
the LAI-2000 Plant Canopy Analyzer (Li-Cor, Lincoln, NE)
was taken at the location of each shoot applying no field of
view restrictor. Above-canopy reference measurements were
taken every 15 s by a second instrument placed in open condi-
tions. To prevent direct sunlight from reaching the sensors, all
measurements were taken in the evening when the sun was
less than 16° above the horizon. Canopy openness was com-
puted based on the gap fraction values in different sections of
the sky provided by the LAI-2000. Canopy openness is mathe-
matically defined as:

openness df= ∫
1

2π
ω ωg ( ) ,

Ω

(1)

where gf(ω) denotes the gap fraction in the solid angle (dω)
around the direction (ω) of the upper hemisphere (Ω).

Shoot and needle silhouette area measurements

Shoot silhouette areas (SSA) in different directions were mea-
sured photographically (see Table 2 for instrumentation). In
our set-up design, the shoot was attached with a pin (at the
mid-point of the twig) to a graduated dial that was fixed to a
metal stand. Thus, the shoot’s position with respect to the view
direction of the camera could be adjusted by (1) changing the
angle between shoot axis (twig) and the optical axis of the
camera, and (2) reattaching the shoot to the pin so that differ-
ent sides of the shoot were facing the camera. The camera was
fixed at a distance of 160–300 cm from the shoot depending
on the size of the shoot and the properties of the lens used, such
that the maximum field of view obtained was 4°. The silhou-
ette image was taken against the light table in an otherwise
dark room. Excess light was minimized by covering the light
table with 50% neutral dark film and the unused area of the
light table was covered by curtains. The distance between the
shoot and the light table was 15 cm.

In our coordinate system, the optical axis of the camera (or
view direction) was horizontal, and the shoot inclination angle
(φ) refers to the angle of the shoot axis (twig) to the vertical.
Thus, for φ = 0°, the twig was perpendicular to the direction of
view, and for φ = 90° the twig was parallel to it (a view along
the axis corresponding to the minimum shoot silhouette area).
The rotation angle (γ) was defined such that γ = 0° when the
shoot’s upper side was facing the viewer (camera). Thus, ro-
tating the shoot 90° (along the shoot axis) from that gave the
“side view” (γ = 90°). For Norway spruce shoots, the silhou-
ette area commonly attains its maximum value at about φ = 0°
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Table 1. Diameter at breast height (DBH), mean height (Height),
basal area (BA), stand volume (V ), growth (CAI), and leaf area index
(LAI) of trees in the irrigated + fertilized (IL) and control (C) plots
used in this study. The estimates are from years 1995 and 1998.

Plot Year DBH Height BA V CAI LAI
(cm) (cm) (m2 ha–1) (m3 ha–1) (m3 ha–1

year–1)

IL 1995 10.8 701 23.4 97.6 12.9 5.9
1998 12.8 845 32.6 143 17.4 8.4

C 1995 6.4 459 7.7 25.4 3.2 2.3
1998 7.2 520 9.1 34.9 4.8 2.9



and γ = 0°, i.e., when the shoot axis and shoot’s upper side are
perpendicular to the view direction. Therefore, SSA (0,0) is
commonly (although not quite accurately) referred to as the
maximum silhouette area.

In 1995, 1997 and 1998, the measurement procedure was as
follows. A set of measurements was taken where the inclina-
tion angle (φ) was changed in steps of 30° (φ = 0°, 30°, 60°,
90°, 120°, 150°). The rotation angle (γ) was 0° in the first set of
measurements, and the procedure was repeated four times
changing γ in steps of 45° (γ = 0°, 45°, 90°, 135°, 180°) or six
times changing γ in steps of 30° (only in 1997). When chang-
ing γ, the previous view direction was marked before the shoot
was detached. The shoot was then reattached to the stand at the
desired rotation angle. In 1996, measurements were taken only
at four rotation angles at a shoot inclination of φ = 0°.

After completing the shoot silhouette area and structural
measurements (see below), the projected area (silhouette area)
of all needles on the shoot was measured photographically.
For this purpose, needles were laid out (not overlapping) on an
acrylic plate as they fell. The acrylic plate, which was used to
prevent the halo effect from burning the needle edges, was
placed 35 mm above the horizontal light table. The silhouette
area measuring system was calibrated with watch spindles or
with precision wires with diameters from 0.8 to 2.0 mm that
matched mean needle diameter.

The spherically averaged shoot silhouette area (SSA) was
calculated by the method of Smolander and Stenberg (2001).
In computing the spherically averaged shoot silhouette to total
needle area ratio (STAR), the correction for the twig area was
made as described by Stenberg et al. (1999). In addition to
STAR, maximum shoot silhouette to total needle area ratio
(STARmax) was calculated by using SSA(0,0) instead of SSA.
We used STARmax as a complement to STAR mainly because
measurements in 1996 did not allow computation of SSA. The
spherically averaged ratio of shoot silhouette area to needle
dry mass (SMR) was calculated by multiplying STAR by the
specific needle area (SNA).

Structural measurements

All needles of the shoot were detached and counted, and the
length and diameter of the twig were measured. We estimated
mean needle length by measuring the lengths of 10–30 sample
needles with a ruler. In addition, three to six needles were
picked from different sides of the central part of the shoot for
determination of needle thickness and width. Needle dry mass
(48 h at 60–70 °C) of the remaining needles of the shoot was

determined and, in 1996 and 1997, foliar nitrogen concentra-
tion was determined with a LECO CHN-900 analyzer (LECO,
St. Joseph, MI).

Anatomical leaf thickness (tn) and width (wn) were mea-
sured from needle cross sections (Figure 1) (see Stenberg et al.
(1999) for details of the method). In 1995–1997, the cross sec-
tions were photographed on slide film, and needle thickness
and width were measured by projecting the slides on the
screen. In 1998, the dimensions were measured with a digital
camera and the Colan Image Analysis Program (ColorSoft,
Keminmaa, Finland).
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Table 2. Equipment used in the photo analyses. Images were analyzed with a video band image analysis program (1995–1996) (Helsinki Univer-
sity of Technology, Espoo, Finland) and with Colan Colorimetric Image Analysis Software (1997–1998) (ColorSoft, Keminmaa, Finland).

Year Field of view (°) Film/camera Lens Pixel size (mm) Pixels (cm–2)

1995 4 Film Tmax 100 Nikon 180 mm, Micro Nikkor 55 mm (needles) 0.4–0.6 280–625
1996 3 Film Tmax 100 Nikon 180 mm, Micro Nikkor 55 mm (needles) 0.08–0.13 5,900–15,600
1997 4 Kodak DCS-420 Nikon 180 mm 0.08–0.13 5,900–15,600
1998 2 Kodak DCS-460 Sigma 400, Micro Nikkor 60 mm (needles) 0.04 62,500

Figure 1. Cross sections of needles at different canopy openness val-
ues between 0.09 and 0.75. Data are from the IL plot in 1997.



Geometric needle area estimates

Total needle area (At) was estimated from mean needle length
(ln), tn and wn as:

A l t wt n n
2

n
2= +2 . (2)

Equation 1 applies to a rhomboidal prism, which was cho-
sen to best approximate the shape of our Norway spruce need-
les (see Figure 1). Total needle area of a shoot (TNA) was
estimated as At multiplied by the number of needles on the
shoot.

A geometric estimate of projected needle area (Ap) was
computed based on the rhomboid model (Niinemets and Kull
1995a) as:

A l
t w

t w
p n

n n

n n

=
+

(max( , ))
,

2

2 2
(3)

where Ap is the projected area of a needle lying on its side so
that the angle to the horizontal is less for the larger diagonal. In
our material, needle thickness was not consistently larger than
needle width. Consequently, as indicated in the formula, we
always used the larger dimension in the numerator in calculat-
ing Ap. The geometric estimate (Ap) agreed fairly well with the
photographically measured projected needle area (Figure 2).
On average, Ap calculated by the rhomboid model exceeded
the photographically measured projected area by 2%.

Statistical analysis

Relationships of STAR, STARmax, SNA and SMR with can-
opy openness (data from all years pooled) were described by a
simple regression (reduced model): y = β0 + β1X1, where X1 de-
notes the logarithm (ln) of canopy openness, ln(openness),

which linearized the response function. The difference be-
tween treatments in the relationships was studied by using an
indicator (“dummy”) variable to account for the effect of fer-
tilization. Multiple linear regression models of the type (full
model): y = β0 + β1X1 + β2X2 + β3X1X2 were thus fitted to the
whole data, where X1 is ln(openness) and X2 is the dummy
variable, which was assigned the value 1 for IL shoots and 0
for C shoots (Neter et al. 1983, SYSTAT statistical software
package, SYSTAT, Evanston, IL). The full model structure al-
lows both the intercept and the slope of the regression to vary
between the groups (indicated by 0 and 1). Testing for differ-
ences in intercept (β2 ≠ 0) and slope (β3 ≠ 0) was done by cal-
culating partial F statistics for the coefficients of the full
model.

Results

In trees on both the C and IL plots, there was a slightly increas-
ing trend in needle nitrogen concentration (Nm) from the bot-
tom to the top of the canopy (Figure 3), and Nm was lower in
1996 than in 1997. The ratio of needle thickness to width
(tn/wn) ranged from 0.75 to 2.1 in IL trees, and from 0.79 to 1.9
in C trees. The ratio decreased with increasing canopy open-
ness (Figure 4a) mainly because of an increase in needle
width. For 88% of the needles tn/wn was between 0.75 and
1.25. The ratio of total to projected needle area (At/Ap) varied
between 2.5 and 4.0 (Figure 4b). The value 4 is obtained when
the needle cross section is a square (tn = wn in Equations 2 and
3). The structural measurements of needle and shoot charac-
teristics are summarized in Table 3.

Shoot size, quantified by twig length (lt) and total needle
area (TNA), was positively correlated with canopy openness
(Table 4). There were decreases in STAR, SNA and SMR with
increasing canopy openness in both control and fertilized trees
(Figures 5–7). The combined effect of the changes in SNA
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Figure 2. Projected needle area calculated with the rhomboid model
(Ap) plotted against photographically measured projected needle area.
Data are from 1995 (�, �), 1996 (�, �), 1997 (� , �) and 1998 (�,
�). Closed symbols refer to the IL plot and open symbols to the C
plot.

Figure 3. Foliar nitrogen concentration (Nm) as a function of canopy
openness. Data are from 1996 (�, �) and 1997 (� , �). Closed sym-
bols refer to the IL plot and open symbols to the C plot. The P-values
of the regressions are 0.006 (IL) and 0.012 (C).



(Figure 5) and STAR (Figure 6) was a more than threefold
change in SMR along the range of openness values in the
study (Figure 7). The effects of fertilization on the relation-

ships of STAR, STARmax, SNA and SMR with canopy open-
ness are summarized in Table 5. The difference in intercept
(values of the dependent variables at full canopy openness)
was statistically significant for SNA (P < 0.001), STAR (P <
0.01) and SMR (P < 0.01). At full canopy openness, IL shoots
had 21% smaller predicted SNA and 14% larger predicted
STAR than C shoots. However, the slopes of the relationships
were larger for SNA (P < 0.05) and smaller for STAR (P <
0.05) in the IL shoots than in the C shoots, implying that the
predicted differences in SNA and STAR between C and IL
shoots decreased at lower values of canopy openness. At an
openness value of 0.5, predicted SNA of IL shoots was 12%
smaller and predicted STAR was 6.1% larger than those of C
shoots. No statistically significant differences (P > 0.05) be-
tween treatments were found in the relationships between
STARmax and canopy openness. For the relationships between
SMR and canopy openness, the intercept (predicted value of
SMR in unshaded conditions) was 26% smaller for IL shoots
(P < 0.01) than for C shoots. However, because the rate of
change in SMR with increased shading was smaller in C
shoots than in IL shoots (although not statistically significant),
at 0.5 canopy openness the predicted SMR was only 10%
smaller for IL shoots than for C shoots.

Discussion

Fertilization increased foliage nitrogen concentration (Nm),
but Nm varied only slightly with canopy openness (Figure 2).
In both IL and C trees, needle width (wn) increased more with
canopy openness than needle thickness (tn). At similar open-
ness values, there was no clear effect of fertilization on tn, but
wn was larger in IL trees than in C trees. As a result, IL trees
had smaller tn/wn at a fixed canopy openness (see Figure 4a).
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Figure 4. Ratio of needle thickness to needle width (tn/wn) (A) and to-
tal needle area to projected needle area (At/Ap) (B) as a function of
canopy openness. Symbols as in Figure 2.

Table 3. Sampling protocol and the ranges of needle length (ln), needle thickness (tn), needle width (wn), thickness to width ratio (tn/wn), total
needle area to projected area ratio (At/Ap), specific needle area (SNA), foliar nitrogen concentration (Nm), twig length (lt), total needle area
(TNA), needle number density (Nn/lt), needle area packing (TNA/lt), spherically averaged shoot silhouette to total area ratio (STAR), maximum
STAR (STARmax) and shoot silhouette to foliage dry mass ratio (SMR).

IL 1995 C 1995 IL 1996 C 1996 IL 1997 C 1997 C 1998

No. shoots/no. trees 35/3 30/3 62/4 55/4 32/2 28/2 48/8
Shoot order 1st 1st 1st 1st Varying Varying 1st
Openness 0.05–0.77 0.27–0.93 0.02–0.74 0.10–0.96 0.07–0.75 0.23–0.90 0.26–0.69
ln (mm) 9.1–16.3 7.6–13.4 7.0–17.6 5.6–20.8 9.6–15.9 6.7–12.5 8.9–13.6
tn (mm) 0.86–1.4 0.85–1.2 0.82–1.5 1.0–1.4 0.86–1.3 1.1–1.5 0.81–1.5
wn (mm) 0.69–1.7 0.72–1.2 0.57–1.5 0.65–1.6 0.81–1.4 0.83–1.9 0.81–1.5
tn/wn 0.75–1.4 0.88–1.3 0.87–2.1 0.78–1.9 0.88–1.28 0.79–1.4 0.79–1.5
At/Ap 3.0–4.0 3.2–4.0 2.5–4.0 2.7–4.0 3.2–4.0 3.0–4.0 2.9–4.0
SNA (cm2 g–1) 74–199 89–147 74–195 56–153 85–190 75–127 67–129
Nm (%) 0.63–1.2 0.45–0.72 0.96–1.6 0.65–1.1
lt (cm) 3.3–22 2.9–8.9 3.0–22 1.5–23 3.0–20 1.6–9.2 2.2–9.0
TNA (cm2) 18.5–150 10.2–64.0 8.7–205 6.8–157 13.1–137 7.4–82.6 22.8–86.2
Nn/lt (cm–1) 10–20 17–26 9–21 11–33 12–22 13–23 15–27
TNA/lt (cm2 cm–1) 3.6–7.8 4.5–11.4 2.9–9.2 3.1–12.7 4.0–11.6 3.4–9.7 4.5–11.4
STAR 0.121–0.209 0.105–0.169 0.122–0.188 0.103–0.166 0.103–0.173
STARmax 0.153–0.310 0.133–0.224 0.127–0.364 0.122–0.240 0.143–0.246 0.115–0.234 0.116–0.251
SMR 10.5–41.7 10.0–21.9 12.1–29.6 8.5–21.8 9.8–16.4



On both plots, tn/wn decreased with increasing openness, from
values of > 1 to values of < 1, but the value of canopy openness
at which the shift occurred was smaller in fertilized trees than
in control trees. Ranges in the ratio of total to projected needle
area (At/Ap) were also similar on both plots (2.5 to 4.0 in IL
trees and 2.7 to 4.0 in C trees). Because At/Ap attains its maxi-
mum value (= 4) when tn = wn (Equations 2 and 3), there was
no monotonically increasing trend in At/Ap with light avail-
ability (Figure 4b). This is in contrast to results obtained in
central European Norway spruce provenances (Niinemets and
Kull 1995a, Sellin 2000).

Specific needle area is a function of needle dimensions and
density. Needle flatness can be characterized by the ratio of
the larger of tn and wn to the smaller of these dimensions
(Sellin 2000). The smaller and flatter the needle, the larger the
ratios of needle surface area to volume (Vn) (At/Vn =
4 1

2
2
2

1 2( / )D D D D+ and SNA (assuming constant density).
The increase in SNA with shading in our material (Figure 5)
was more closely associated with decreasing needle size than
with increasing needle flatness, which did not show any clear
trend over the common range of openness values. Needle
width alone explained ~50% of the variation in SNA in IL

1190 PALMROTH, STENBERG, SMOLANDER, VOIPIO AND SMOLANDER

TREE PHYSIOLOGY VOLUME 22, 2002

Table 4. A Spearman correlation matrix for canopy openness, and needle and shoot characteristics. Symbols as in Table 3. Asterisks indicate sta-
tistical significance (* = P < 0.05, ** = P < 0.01 and *** = P < 0.001) of the correlations.

Treatment Openness ln tn wn tn/wn SNA l t TNA Nn/lt STAR

ln IL 0.32 **
C 0.28 **

tn IL 0.51 *** –0.16
C –0.04 0.03

wn IL 0.83 *** 0.13 0.82 ***
C 0.24 * 0.15 0.65 ***

tn/wn IL –0.85 *** –0.35 ** –0.31 ** –0.76 ***
C –0.34 *** –0.09 –0.06 –0.75 ***

SNA IL –0.88 *** –0.19 –0.57 *** –0.77 *** 0.70 ***
C –0.52 *** –0.36 *** –0.27 ** –0.52 *** 0.54 ***

l t IL 0.69 *** 0.21 0.48 *** 0.72 *** –0.67 *** –0.70 ***
C 0.42 *** 0.35 *** –0.00 0.35 *** –0.53 *** –0.60 ***

TNA IL 0.81 *** 0.46 *** 0.51 *** 0.82 *** –0.78 *** –0.72 *** 0.88 ***
C 0.45 *** 0.61 *** 0.20 * 0.51 *** –0.51 *** –0.61 *** 0.87 ***

Nn/lt IL –0.02 0.22 * –0.30 ** –0.19 0.00 0.21 –0.39 *** –0.13
C 0.16 0.12 –0.29 ** –0.21 * 0.14 0.18 –0.16 –0.05

STAR IL –0.58 *** –0.32 ** –0.25 * –0.58 *** 0.70 *** 0.28 * –0.44 *** –0.66 *** –0.30 *
C –0.50 *** –0.25 * –0.07 –0.39 *** 0.44 *** 0.19 –0.45 *** –0.62 *** –0.49 ***

SMR IL –0.96 *** –0.26 * –0.56 *** –0.85 *** 0.80 *** 0.93 *** –0.75 *** –0.84 *** 0.07 0.58 ***
C –0.63 *** –0.43 *** –0.22 * –0.60 *** 0.62 *** 0.77 *** –0.70 *** –0.82 *** –0.14 0.70 ***

Figure 5. Specific needle area (SNA) as a function of canopy open-
ness. See Table 5 for parameters of the fitted curves.

Figure 6. Mean shoot silhouette to total needle area ratio (STAR) as a
function of canopy openness. See Table 5 for parameters of the fitted
curves.



trees, and ~75% in C trees (data from 1995–1997). Needle
density (needle dry mass/geometrically calculated Vn)
changed little within the common range of observed openness
values on the C and IL plots, but IL needles were somewhat
denser than C needles. Thus, the higher SNA for C shoots than
for IL shoots within this range was related to both smaller
needles and lower needle density.

Statistically significant differences between treatments
were found in the intercepts of the relationships of STAR and
SMR with canopy openness (Figures 6 and 7). In open condi-
tions, IL trees produced shoots that had somewhat higher

STAR (less mutual shading within shoot) than C trees, but
they had lower SMR (SMR = STAR × SNA) because of their
smaller SNA. However, the differences in intercepts were off-
set by opposite differences in the rate of change with shading
(slopes of the relationships) (Table 5). As a result, the differ-
ences between treatments in predicted STAR and SMR had
different signs at high openness and low openness values, re-
spectively, and were relatively minor at medium openness
(e.g., 0.5, a value well within the common range of observed
openness values on the C and IL plots). For STARmax, which
showed a strong positive correlation with STAR (r 2 = 0.88),
no significant effect of fertilization on either slope or intercept
was found. This test covered a larger data set (including data
from 1996, see Table 3), and the range of canopy openness
values was wider.

Although total canopy PAR interception is a saturating
function of LAI, mean canopy openness (available light) and
mean light interception per unit leaf area or mass decrease
with increasing LAI. The ability of trees to adjust shoot struc-
ture to increase light-interception efficiency of shade foliage is
an important determinant of the amount of LAI that can be
maintained. We looked at the light-interception efficiency of
individual shoots along an openness gradient in two canopies
differing in LAI. We found a twofold increase in STAR and a
threefold increase in SMR with shading. The C and IL shoots
were similar in terms of light-interception efficiency per unit
area or mass within the overlapping range of canopy openness
values. However, there were no current-year shoots below
10% canopy openness on the C plot, whereas on the IL plot
current-year shoots were still found at 2% openness. This sug-
gests that the higher capacity of fertilized trees to produce and
maintain foliage at lower irradiances does not result from in-
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Figure 7. Mean shoot silhouette area per unit needle dry mass (SMR)
as a function of canopy openness. See Table 5 for parameters of the
fitted curves.

Table 5. Reduced models (y = β0 + β1ln(openness)), where a single line was fitted to the whole data (IL + C) (upper section of table) together with
individual regression models for SNA, STAR, STARmax and SMR for fertilized (IL) and control (C) plots (lower section of table). Root mean
square errors (RMSE) are given for the reduced model and the full model (y = β0 + β1ln(openness) + β2X2 + β3ln(openness)X2), where X2 is an in-
dicator variable. Asterisks indicate statistical significance (* = P < 0.05, ** = P < 0.01 and *** = P < 0.001) of the between-treatment differences
in the intercept (β0) and slope (β1). Predicted values of the dependent variables are calculated at a canopy openness of 0.5.

β0 β1 r2 N RMSE y (0.5)

SNA Reduced 83.3 –25.0 0.56 188 16.9
Full 16.3

STAR Reduced 0.118 –0.021 0.47 153 0.015
Full 0.014

STARmax Reduced 0.144 –0.036 0.49 188 0.028
Full 0.028

SMR Reduced 9.01 –6.68 0.76 153 2.53
Full 2.47

SNA IL 70.3 *** –31.0 * 0.66 83 91.8
C 88.5 –21.7 0.28 105 104

STAR IL 0.129 ** –0.015 * 0.38 64 0.140
C 0.113 –0.028 0.28 89 0.132

STARmax IL 0.154 –0.032 0.41 83 0.176
C 0.140 –0.039 0.30 105 0.167

SMR IL 7.22 ** –7.60 0.81 64 12.5
C 9.78 –5.95 0.42 89 13.9



creased light-interception efficiency at the shoot level. Rather,
it may reflect higher conversion efficiency of shade foliage or
changes in allocation between shoots and roots and, thereby,
lower construction costs per unit new leaf area in terms of sup-
porting woody tissues (Givnish 1988). Aboveground biomass
and growth were higher on the fertilized plot than on the con-
trol plot. The associated increase in photosynthetic production
is likely to be a combined effect resulting from higher LAI, in-
creasing the total canopy PAR interception, and higher con-
version efficiency per unit of intercepted PAR. In contrast, the
difference in potential PAR capture per unit leaf mass of
shoots developed at similar light environments was small.
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Abstract

The three-dimensional structure of a coniferous shoot gives rise to multiple scattering of light between the needles of the shoot, causing the

shoot spectral reflectance to differ from that of a flat leaf. Forest reflectance models based on the radiative transfer equation handle shoot level

clumping by correcting the radiation attenuation coefficient with a clumping index. The clumping index causes a reduction in the interception

of radiation by the canopy at a fixed leaf area index (LAI). In this study, we show how within-shoot multiple scattering is related to shoot scale

clumping and derive a similar, but wavelength dependent, correction to the scattering coefficient. The results provide a method for integrating

shoot structure into current radiative transfer equation based forest reflectance models. The method was applied to explore the effect of shoot

scale clumping on canopy spectral reflectance using simple model canopies with a homogeneous higher level structure. The clumping of

needles into shoots caused a wavelength dependent reduction in canopy reflectance, as compared to that of a leaf canopy with similar

interception. This is proposed to be one reason why coniferous and broad-leaved canopies occupy different regions in the spectral space and

exhibit different dependency of spectral vegetation indices on LAI.

D 2003 Elsevier Inc. All rights reserved.

Keywords: Leaf area index; Monte Carlo modelling; Radiative transfer models; Remote sensing; Vegetation canopy model

1. Introduction

A well known problem in the radiative transfer theory is

how small-scale structures should be handled (Knyazikhin,

Martonchik, Myneni, Diner, & Running, 1998; Ross, 1981;

Shabanov, Knyazikhin, Baret, & Myneni, 2000). In conifer-

ous canopies, the dense clumping of needles in the small

region occupied by a shoot causes variation in needle area

density at the shoot size scale (i.e. from centimeters to

decimeters). It is not feasible to include such small-scale

variation into any leaf area density distribution that is to be

useful in formulating the radiative transfer problem for three-

dimensional plant canopies. In other words, the ‘‘elementary

volume’’, used in formulating radiative transfer problems,

should be small enough that essentially no mutual shading

between the elements exists but large enough for statistical

laws, such as Beer’s law, to apply (Ross, 1981). In coniferous

canopies, there is already substantial mutual shading be-

tween the needles of a shoot (Oker-Blom & Smolander,

1988).

A possible way to overcome this problem is to use the

shoot as the basic structural element in radiative transfer

models for conifers (Nilson & Ross, 1997). The canopy

structure is then described in terms of the spatial and angular

distribution of shoots, and the geometrical and spectral

properties of leaves are replaced with those of shoots. This

approach, using the annual shoot as the basic structural unit,

has long been applied in light interception models (Cescatti,

1998; Nilson, Anniste, Lang, & Praks, 1999; Oker-Blom &

Kellomäki, 1983; Stenberg, Smolander, & Kellomäki, 1993)

and LAI measurement techniques (Chen, Rich, Gower,

Norman, & Plummer, 1997; Stenberg, 1996). A key param-

eter entering these models is the shoot silhouette to total area

ratio (STAR) (Oker-Blom & Smolander, 1988), which is

conceptually analogous to the G-function, or the mean

projection of unit foliage area, defined for flat leaves (Nilson,

1971). These models have been designed specifically for the

estimation of photosynthesis, and the spectral properties of
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shoots have not been considered important because the

scattering of photosynthetically active radiation (PAR) by

conifer needles is known to be very small (Daughtry,

Ranson, & Biehl, 1989). Some recent canopy reflectance

models (Knyazikhin et al., 1998; Kuusk & Nilson, 2000;

Shabanov et al., 2000) have accounted for the effect of small-

scale clumping by modifying the G-function but in these

approaches the shoot has not been explicitly used as the basic

element in evaluating the area scattering phase function of

the transport equation. The presence of within-shoot multiple

scattering has long been recognized (Gates & Benedict,

1963; Norman & Jarvis, 1975), but in order to take it into

account in radiative transfer models, it is necessary to derive

quantitative relationships between the structure and the

scattering properties of a shoot.

In this paper, we present a method by which the effect of

needle clumping into shoots can be accounted for in canopy

reflectance models. The approach was developed using

empirical data on Scots pine (Pinus sylvestris L.) together

with a previously developed geometrical model of Scots pine

shoots. First, we simulated the scattering phase function of a

Scots pine shoot for different wavelengths and for different

directions of the incoming beam of photons. Secondly, we

estimated the shoot-specific but wavelength independent

parameter psh, corresponding to the probability that a photon

scattered from the needle surface of the shoot will interact

with the shoot again. The parameter psh is conceptually

similar to the canopy structural parameter ( pi, probability

of interaction) defined by Knyazikhin et al. (1998), which

links together canopy absorptance and scattering at any two

different wavelengths (Panferov et al., 2001). In thermal

engineering, a similar concept is known as view factor or

shape factor, giving the proportion of radiation emitted from

a body that hits the body again (e.g. Holman, 1986).

We show that the parameter psh provides a similar link at

the shoot level. That is, knowing psh and the scattering

coefficient of a needle, the scattering coefficient of a shoot

for any given wavelength can be calculated by a simple

equation. Third, we derive a theoretical relationship between

psh and the spherically averaged STAR (STAR), and present

empirical verification using material on shoot structure and

STAR in Scots pine (Stenberg, Palmroth, Bond, Sprugel, &

Smolander, 2001). Results from the shoot level simulations

are used to construct a ‘‘shoot-like leaf’’ with similarG-value

and scattering properties as the shoot.

Canopies composed of flat leaves, shoots, and ‘‘shoot-like

leaves’’ were built, and simulations at the canopy level were

performed to compare the spectral reflectance of the cano-

pies for similar values of leaf area index (LAI). We used

simple Poisson canopies, where the foliage elements (shoots

or leaves) were randomly distributed and spherically orient-

ed. Needle reflectance and transmittance were assumed to be

similar to those of leaves, the difference between the canopy

reflectances thus being caused solely by shoot structure. The

main results from the simulations were that: (i) the clumping

of needles into shoots produced a wavelength dependent

reduction in canopy reflectance as compared to a leaf canopy

with similar LAI, and that (ii) the reflectance behavior of the

‘‘real’’ shoot canopy was well approximated by using

‘‘shoot-like leaves’’, thus providing a means for integrating

shoot structure into leaf-based reflectance models.

2. Materials and methods

2.1. Description of shoot structure

The three-dimensional structure of a coniferous shoot

gives rise to multiple scattering within the shoot, causing

the scattering from a shoot to differ from that of a flat leaf

(Fig. 1). For description of shoot structure, we used a

geometrical model for Scots pine shoots, and structural data

from a previous investigation (Stenberg et al., 2001). The

shoot depicted in Fig. 1Awas generated from a model using

the following assumptions: (i) needles were of the same size

and cylindrical in shape, (ii) needle pairs were evenly

positioned along the shoot axis, (iii) the angle between

needle and shoot axis was constant, (iv) the orientation of

Fig. 1. Presentation of the problem: a photon reflected from a shoot may

have interacted with the shoot several times (multiple scattering) (A),

whereas with a flat leaf there is only one interaction (B).
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needles around the shoot axis followed a Fibonacci phyllo-

tactic arrangement with a divergence angle of 8/13� 2p
between successive needle pairs (Cannell & Bowler, 1978),

and (v) the fascicle angle, which is the opening angle

between the two needles in a fascicle, was uniformly

distributed between 0 and 2/13p. The structural parameters

of the ‘‘average’’ Scots pine shoot chosen for the simulation

of scattering phase function are shown in Table 1.

STAR (Table 1) denotes the spherically averaged shoot

silhouette to total area ratio, mathematically defined as:

STAR ¼ 1

TNA

1

4p

Z
4p
SSAðXÞdX ð1Þ

where TNA denotes the total needle area of the shoot, and

SSA(X) is the shoot silhouette area in direction X. Integra-
tion over all directions of the sphere is denoted by 4p.
STAR was calculated based on photographically measured

SSA in different directions, using the procedure described

by Smolander and Stenberg (2001).

2.2. Simulation of the shoot scattering phase function

A beam of photons of specific wavelength was fired

toward the shoot from different directions, and a ray-tracing

procedure was used to follow the path of each photon (this

method is called ‘‘ray tracing from the light sources’’ by

Foley, van Dam, Feiner, & Hughes, 1990 to emphasize the

fact that the paths of the photons are followed in the

direction the photons actually move).

The simulation procedure was as follows. The beam

direction was held fixed (entering parallel to the x-axis),

and the shoot was placed so that its midpoint was in the

origin and its axis was along a chosen direction, denoted by

X. A large number (N) of photons was fired from different

( y, z) coordinates chosen randomly from an area (S). This

area was defined so as to contain all the shoot silhouette area

(SSA) (Fig. 2). From the total number of fired photons, the

proportion (N i
(X)) that hit the shoot (first-order interaction)

was followed by ray tracing, whereas the photons that did

not hit the shoot were just counted. For a given direction,

the fraction of fired photons hitting the shoot (N i
(X)/N) thus

corresponds to SSA/S in the considered direction.

Each photon intercepted by the shoot was followed

until it was absorbed, or finally escaped the shoot. By

intercepted photons, we mean all the photons that orig-

inally hit the shoot, regardless of whether they finally

were absorbed or scattered. At the points where a photon

hit the needle surface, the photon was either absorbed,

reflected, or transmitted through the needle. Needle re-

flectance (qL) and transmittance (sL) were assumed to

have the same value. Reflection or transmission of a

photon hitting a needle occurred with a probability equal

to one half of the needle scattering coefficient (xL) at the

specified wavelength, and absorption occurred with prob-

ability 1�xL. The twig was assumed to have similar

reflectance as the needles, but transmittance through the

twig was set to zero. All surfaces were assumed to reflect

as Lambertian surfaces, reradiating the intercepted pho-

tons following a cosine distribution around the normal to

the surface at the point of reflection. The transmitted part

of the radiation was assumed to emerge from a point on

the opposite side of the needle, and to follow a cosine

distribution around the normal to this opposite surface.

(Sometimes in the lower part of a fascicle, the point on

the opposite side of the needle was inside the other

needle of the fascicle. In this case, the point of emer-

gence was taken to be on the opposite side of that other

needle.)

For a Lambertian surface, the fraction of photons reflected

into a solid angle dX around (h, /) ( = polar and azimuth

Table 1

Structural parameters of the model shoot

Number of needles 190

Total needle area 156.3 cm2

Needle length 2.85 cm

Needle diameter 0.092 cm

Needle angle (from twig) 40.5j
Fascicle angle 0–27.7j
Twig length 7.7 cm

Twig diameter 0.3 cm

STAR 0.133

Fig. 2. Silhouettes of the model shoot as seen (A) from side, (B) at 45j angle,
and (C) axially.
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angle relative to the needle surface normal at the point of

reflection) is given by:

f ðh;/ÞdX ¼ 1

p
coshdX ¼ 1

p
coshsinhdhd/: ð2Þ

A new direction for a reflected or transmitted photon was

generated following this distribution and the ray-tracing

procedure was repeated. The final fate of every photon was

recorded in terms of: (i) whether it was absorbed or scattered

(reflected or transmitted), (ii) its outgoing direction in case of

scattering, and (iii) the total number of interactions within the

shoot.

The scattering coefficient of a shoot, unlike that of a flat

Lambertian surface, varies with the direction of incoming

radiation. We define the mean shoot scattering coefficient

(xsh) as the fraction of scattered photons to photons inter-

cepted by the shoot in an isotropic radiation field. Let X=(h,
/) denote the orientation of the shoot in relation to beam

direction, and SSA(X) and xsh(X) the silhouette area and

scattering coefficient, respectively, of the shoot in the con-

sidered orientation. The number of intercepted photons is

proportional to SSA(X), and we have:

xsh ¼ 1

4pSSA

Z
4p
xshðXÞSSAðXÞdX; ð3Þ

where SSA denotes the spherically averaged SSA.

Simulation of the scattering phase function of the shoot

in an isotropic radiation field was carried out with the

procedure described above, with the difference that before

a new photon was fired, the orientation of the shoot axis

was generated again according to the uniform spherical

density function. Interaction between the shoot and a

photon from the direction X in relation to the shoot

occurred with probability SSA(X)/S, the total fraction of

intercepted photons (Ni/N) being proportional to SSA. The

shoot scattering coefficient (xsh) was calculated as the

ratio of photons finally escaping the shoot (Ne) to the total

number of photons initially hitting the shoot (Ni),

xsh =Ne/Ni. Notice that the shoot scattering coefficient

can also be interpreted as the scattering coefficient of a

layer of spherically oriented shoots (not shading each

other).

2.3. Estimation of the shoot structural parameter psh

Simulations of xsh were performed to estimate the shoot

structural parameter psh, expressing the probability that a

photon scattered from the needle surface of the shoot will

interact within the shoot again. We use a heuristic approach

to derive a relation linking the shoot scattering coefficient

(xsh) and absorptance (Ash = 1�xsh) to the parameter psh. At

every interaction between a photon of specific wavelength k
and a needle on the shoot, absorption occurs with probability

1�xL(k), where xL(k) is the needle scattering coefficient at

the considered wavelength. Otherwise, with probability

xL(k), the photon is scattered and may interact within the

shoot again (see Fig. 1A). Assuming that the probability by

which a scattered photon will interact again (parameter psh)

remains constant in successive interactions, shoot absorp-

tance (the eventually absorbed fraction of the photons that

initially hit the shoot) is obtained as the sum

AshðkÞ ¼ ½1� xLðkÞ� þ ½1� xLðkÞ�pshxLðkÞ

þ ½1� xLðkÞ�p2shxLðkÞ2 þ . . . ¼ 1� xLðkÞ
1� pshxLðkÞ :

ð4Þ

Shoot absorptance (Ash) normalized by the needle absorp-

tance (1�xL) equals the average number (n) of interactions

between a photon and the shoot. From Eq. (4) follows that

n ¼ 1

1� pshxLðkÞ ð5Þ

where the denominator 1� pshxL(k) is the fraction of

intercepted photons interacting only once with the shoot.

Notice that for xL= 0, or if psh = 0 (no within-shoot shading),

we always have n= 1 (see Fig. 1).

The shoot scattering coefficient is now obtained (from

Eqs. (4) and (5)) as:

xshðkÞ ¼ 1� AshðkÞ ¼ xLðkÞ 1� psh

1� pshxLðkÞ
¼ xLðkÞnð1� pshÞ: ð6Þ

We see that the shoot scattering coefficient normalized by

the needle scattering coefficient (xsh/xL) equals the average

number of interactions (n) multiplied by the probability of

escape (1� psh). The ratio decreases when the shoot self-

shading ( psh) increases, and the ratio increases when xL

increases. (In case of psh = 0, no within-shoot shading, the

scattering coefficients for shoot and needle, xsh and xL, are

equal.)

2.4. Relationship between STAR and psh

If there were no mutual shading between the (assumed

convex) needles on a shoot, the spherically averaged shoot

silhouette to total area ratio, STAR (Eq. (1)), would be 1/4.

(This follows from Cauchy’s theorem, stating that the

spherically averaged projected area of any convex body

equals one fourth of its total surface area; see Lang, 1991).

The ratio between STAR and 1/4, i.e. the ratio of spherically

projected shoot area to spherically projected needle area, is

4STAR . This quantity was defined by Stenberg, Linder,

Smolander, and Flower-Ellis (1994) as the shoot shading

factor (b) (see also Stenberg, 1996), and corresponds to the

needle clumping index in shoots (j) used by Nilson et al.

(1999).
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We proceed to show that 4STAR can also be interpreted

as the mean probability that a photon emitted from a

random point on the needle surface of the shoot will not

hit another needle of the shoot (‘‘probability of no interac-

tion’’). Consider a Lambertian surface of area A emitting

radiation at level E per unit area per unit time (see Bell &

Rose, 1981). If A is the surface of a non-self-shadowing

(convex) body, an observer from a random direction would

see, on average, a silhouette area A/4 at constant radiance

E/p (since the brightness of a Lambertian surface does not

depend on the view angle). Integrating this over all direc-

tions (4p) gives a total emitted energy of AE per unit time,

as it should. Now, if the object were self-shadowing, its

average silhouette area As would be smaller than A/4. The

observer would nevertheless see all of the surface at the

same radiance E/p (assuming here, that the surface only

emits radiation but does not reflect it). Integrating as

before, the total emitted energy is 4AsE per unit time. This

means, that a proportion of 1� 4As/A= 1� 4STAR of the

emitted energy does not leave the body, because it hits it

again.

We recall that the shoot structural parameter psh is the

mean probability that a photon reflected from the surface of

the shoot will interact with the shoot again. As we assumed

Lambertian reflectance, 4STAR can in turn be interpreted as

the probability that a reflected photon will escape the shoot.

Consequently, psh should be closely related to 1� 4STAR.

The only difference between the parameters comes from the

spatial averaging: 1� 4STAR represents the mean over

points on the surface, psh is spatially averaged over the

points of interaction.

To test the proposed relationship between psh and STAR,

we estimated psh for eight additional Scots pine shoots for

which the STAR and parameter values needed in the

simulations were available from a previous investigation

(Stenberg et al., 2001). The shoots originated from different

heights within a tree crown (the same tree from which our

model shoot was taken) and represented a wide range of

STAR values.

2.5. Simulation of canopy reflectance

Canopies with randomly distributed shoots and leaves

(Poisson canopies) were generated for different values of

LAI. In addition, we constructed a ‘‘shoot-like leaf canopy’’,

composed of leaves with the same G-value and similar

scattering properties as the shoot. Simulations were per-

formed to produce the reflectance of these canopies, assumed

to be bounded below by an all-absorbing surface (‘‘black

soil’’). A beam of photons of a specific wavelength was fired

into the canopies from a given direction, and a ray-tracing

procedure was applied to follow each photon until it was

absorbed, or escaped the canopy.

First, for every fired photon, the length (l) of its path

through the canopy before any interaction with leaves/shoots

occurred was determined. It was calculated using the prob-

ability that a photon, while travelling a distance x in a

Poisson canopy, does not interact with leaves,

PðlzxÞ ¼ expð�GðhÞuLxÞ ð7Þ
where uL is the leaf area density and G(h) denotes the mean

projection of unit leaf or shoot area in the path direction (with

zenith angle h).
The leaf area index (LAI) equals leaf area density (uL)

multiplied by total canopy depth (D), LAI = uLD. The

relationship between canopy interceptance (i0, the fraction

of fired photons interacting with the canopy), corresponding

to the probability 1�P(lzD/cosh), and LAI is given by (cf.
Eq. (7))

i0 ¼ 1� exp
�GuLD

cosh

� �
¼ 1� exp

�G LAI

cosh

� �
: ð8Þ

In our model canopies, a spherical orientation of leaves

and shoots was assumed. The G-value in this case is

independent of h and equals 0.5 for leaves when leaf area

is defined on a half of total surface area basis (Chen & Black,

1992). For shoots, using half of total needle area as the basis,

the G-value corresponds to 2STAR (Oker-Blom & Smo-

lander, 1988). Whenever lcosh was greater than the total

depth of the canopy (D), the photon escaped to the soil.

Otherwise, the photon interacted with a leaf or a shoot that

was assumed to be situated at the sampled depth in the

canopy.

When a photon collided with a leaf, the divergence angle

b (the angle between the propagating direction of the photon

before and after collision) and the rotation angle w (the angle

of rotation for the new direction of propagation, around the

axis of the old direction) were sampled according to the

probability density function

f ðb;wÞ ¼ 2

3p2
ðsinb� bcosbÞ þ 2

3p
ðcosbÞ sL

xL

; ð9Þ

where xL is the leaf reflectance, sL leaf transmittance and

where ba[0, p], wa[0, 2p]. This is the scattering phase

function for spherically oriented leaves (and is uniform for

w) as explained in formula (II.6.9) on p. 257 in Ross (1981),

but here it is normalized so that its integral over all directions

is 1.

In the shoot canopy, the probability of a photon hitting the

shoot from a certain direction should be proportional to the

shoot silhouette area on a plane normal to the propagating

direction of the photon. This was handled so that, in applying

the procedure for spherically oriented shoots, if the photon

(fired from a randomly chosen point on the area S of fixed

size) did not hit the shoot at the first try, it was fired again

from a new point after resampling the shoot orientation. In

this way, the probability of interaction with the shoot was

proportional to its silhouette area, and the simulated outcome

of the photon (absorbed or scattered to a specified direction)
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was representative for spherical shoot orientation. The length

of the path of photons scattered from the leaf or the shoot,

before new interaction occurred, was sampled again using

Eq. (7). Scattered photons escaped the canopy whenever

l was greater than the distance out from the canopy in the

specified direction.

2.6. Simulation scheme

Canopy reflectance was expressed relative to that of an

ideal (100% reflecting) Lambertian surface placed at the top

of the canopy. The bidirectional reflectance factor (BRF) is

defined as the ratio of radiant flux reflected from a surface

area into a particular direction to what would have been

reflected in case of an ideal Lambertian surface of the same

area (Martonchik, Bruegge, & Strahler, 2000). A Lamber-

tian surface produces an equal radiance in all directions of

the upper hemisphere (N/(pA), number of photons per unit

solid angle per unit of emitting area normal to the direction

of propagation), whereas the total flux (number of photons)

into a unit solid angle is proportional to cosh (see Eq. (2)).

The number of photons reflected from the canopy to a fixed

solid angle dX around the zenith angle h divided by

NcoshdX/p gives the BRF. In the simulations, photons

entered from a zenith angle of 45j, and BRF was calculated

assuming the receiving sensor (with 10 angular radius for

dX) to be in the zenith (h = 0j).
Canopy BRF of the leaf and shoot canopies was com-

pared for similar values of LAI. Leaf and needle scattering

coefficients of 0.1 and 0.9 were chosen to represent wave-

lengths around the ‘‘red edge’’ in the leaf spectra, character-

ized by an absorption peak in red and an absorption

minimum in near-infrared (NIR). We hereafter refer to the

simulated wavelengths as ‘‘red’’ and ‘‘NIR’’.

3. Results

3.1. Shoot scattering phase function

Fig. 3 shows the directional distribution of photons

scattered from the model shoot, for different angles between

the directions of the beam and the shoot axis, and also the

case for spherically oriented shoots. The photons scattered

from the shoot that changed their direction more than 90j
were considered reflected, and photons that changed their

direction less than 90j were considered transmitted. For the

NIR wavelength (that is, for xL= 0.9), the shoot scattering

coefficient was xsh = 0.81, with reflectance qsh = 0.47 and

transmittance ssh = 0.34 (Fig. 3). For the red wavelength

(xL= 0.1), the shoot scattering coefficient was xsh = 0.059,

with qsh = 0.034 and ssh = 0.025. The scattering phase

function of the spherically oriented shoots was closely

imitated by the scattering phase function of the shoot-like

leaf, for which transmittance sL was 42% of xL at both

wavelengths. Thus, the shoot scattering phase functions had

more weight in the backscattering directions than the

corresponding leaf scattering phase functions (Fig. 4). (It is

to be noted that the shoot transmittance and reflectance, as

defined above, are not directly comparable to leaf transmit-

tance and reflectance. With the shoot, photons scattering less

than 90j were always considered transmitted. With spheri-

cally oriented leaves, a photon may well scatter less than 90j
also when it is technically reflected, not transmitted.)

Fig. 3. Shoot scattering coefficient (SC) and the directional distribution of scattered photons for NIR wavelengths (needle SC= 0.9) for different directions of

incoming radiation. The beam of radiation enters from the direction of the x-axis, and the shoot tip is directed to an angle of (A) 0j (B) 45j (C) 90j, (D) 135j,
and (E) 180j opening from the x-axis towards the z-axis. In (F), the average directional distribution and scattering coefficient for scattering from randomly

oriented shoots are presented.
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3.2. Shoot scattering coefficient as a function of the

parameter psh

The shoot scattering coefficient xsh was simulated for a

range of needle scattering coefficients xL= 0.1, 0.2, . . ., 1.
The shoot structural parameter psh was estimated based on

the simulations performed for xL= 1. It was calculated as the

weighted mean of the ratios nj + 1/sj ( j = 1, 2, 3,. . .) where
nj + 1 denotes the number of photons interacting at least j + 1

times with the shoot before being absorbed or scattered out

from the shoot, and sj denotes the number of photons

scattered at the jth interaction. The ratio gives the fraction

of the scattered photons at the jth interaction that hit the shoot

again. The ratios were weighted proportional to sj. The

estimated value of psh for the model shoot was 0.474. Using

this value, xsh as a function of xL was then predicted by Eq.

(6) (Fig. 5). Good agreement was found between predicted

and simulated values of xsh, despite the fact that there was

some variation in the ratios nj + 1/sj (i.e. the basic assumption

behind the derivation of Eq. (6) did not exactly hold true).

Fitting Eq. (6) to the data points in Fig. 5 by the least squares

method would have yielded the estimate psh = 0.467, which

is negligibly different (1.5% difference) from the value

estimated directly by simulation as explained above. (The

shoot scattering coefficient xsh is 0.98 for the needle

scattering coefficient xL= 1 (Fig. 4) because sometimes

the photons hit the twig which had no transmittance.)

3.3. Correspondence between STAR and psh

A close to one to one relationship was found between the

simulated psh values, and 1� 4STAR. (Fig. 6). This result is

supported by theoretical considerations (Section 2.4), which

also explain why an exact correspondence should not be

Fig. 4. Cross-sectional views of scattering phase functions for (A) leaf with qL= 0.45, sL= 0.45 (thin dashed line), shoot (thick dashed line) with values

qL= 0.45 and sL= 0.45 for its needles, and leaf with qL= 0.47 and sL= 0.34 (thin line), (B) leaf with qL= 0.05, sL= 0.05 (thin dashed line), shoot (thick dashed

line) with values qL= 0.05 and sL= 0.05 for its needes, and leaf with qL= 0.034 and sL= 0.025 (thin line). The radiation is assumed to come from the direction

of positive x-axis and to meet the object in origo.

Fig. 5. Predicted (Eq. (5) with psh = 0.474) and simulated shoot scattering

coefficient (black dots) for different needle scattering coefficients

(wavelengths).

Fig. 6. Relation between psh and 1� 4STAR for nine Scots pine shoots.

Shoot structural data from a previous investigation is used (Stenberg et al.,

2001).
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expected. The formulation of the parameter psh in Section 2.3

was approximative as it was based on the assumption that the

probability of interaction stays constant with successive

interactions. In reality, the density of points where scattering

occurs varies with the order of interaction, and it is therefore

not possible to analytically define the weight on the area over

which psh is averaged.

It should also be recognized that, in contrast to STAR, psh
is not just a function of shoot geometry but has some

dependency on needle optical properties since they affect

the directional distribution of scattered photons (here as-

sumed to be Lambertian). Despite this difficulty in finding a

strict definition for psh the correspondence between psh and

STAR was in our case good enough to be useful.

3.4. Canopy simulations

In Fig. 7, canopy reflectance (BRF) in red and NIR

wavelengths for the model canopies (Table 2), bounded

underneath by a black surface, are compared. We notice first

Fig. 7. Canopy bidirectional reflectance factor (BRF) in red and NIR

wavelengths as a function of LAI for canopies bounded underneath by

black soil. Curve (1) is for leaf canopy, curve (2) for shoot canopy and the

dashed curve (3) for ‘‘shoot-like leaf’’ canopy. The black dots denote LAI

values of 2, 4, 6, 8 and 10. The solar zenith angle is 45j and the view zenith

angle is 0j.

Table 2

Parameters used in the canopy simulations

Canopy G-value Red NIR

xL qL sL xL qL sL

Leaf 0.5 0.1 0.05 0.05 0.9 0.45 0.45

Shoot 0.266 0.1 0.05 0.05 0.9 0.45 0.45

Shoot-like leaf 0.266 0.059 0.034 0.025 0.81 0.47 0.34

Fig. 8. Canopy bidirectional reflectance factor (BRF) in red and NIR

wavelengths as a function of canopy interceptance (i0) for canopies bounded

underneath by black soil. Curve (1) is for leaf canopy, curve (2) for shoot

canopy, and the dashed curve (3) for ‘‘shoot-like leaf’’ canopy. The black

dots denote LAI values of 2, 4, 6, 8 and 10 to facilitate comparison with Fig.

7. The solar zenith angle is 45j and the view zenith angle is 0j.

S. Smolander, P. Stenberg / Remote Sensing of Environment 88 (2003) 363–373370



that the reflectance of the shoot canopy was well approxi-

mated by the shoot-like leaf canopy. All curves increased

with increasing LAI as they should, since nonreflecting

background was assumed in these simulations. At small

LAI, canopy reflectance increased more sharply with in-

creasing LAI in the leaf canopy than in the shoot canopy. A

reason for this is that the leaf canopy had a higher G-value

and thus higher canopy interceptance (i0) at similar LAI (see

Eq. (8)). When presented as a function of i0 rather than LAI,

the reflectance factor of the leaf canopy still remained higher

than that of the shoot canopy (Fig. 8). At full canopy cover

(represented here by simulations for LAI = 10) the reflec-

tance factor in red was 1.7% in the leaf canopy and 1.1% in

the shoot canopy. In NIR, the respective values were 42% for

the leaf canopy and 30% for the shoot canopy.

4. Discussion

For a fixed LAI, the effect of the clumping of foliage in

the canopy is to reduce canopy interceptance (fraction of

incoming photons interacting with the leaves or needles in

the canopy). In radiative transfer models, clumping at larger

spatial scales (e.g. grouping of leaves into tree crowns) can

conveniently be handled by dividing the canopy volume in

non-foliated and foliated parts (tree crowns) (Kuusk &

Nilson, 2000; Nilson & Peterson, 1991). The spatial distri-

bution of leaf area is commonly described by a probability

density function, which allows for variation in leaf area

density in different parts of the foliated canopy. However,

the scale at which variation can be considered by this

approach is limited by the size of the smallest unit (the

‘‘elementary volume’’) for which the statistical description is

still reasonable. That is, the (imaginary) elementary volume

must be large enough to allow the leaf area density to be

defined, and contain a sufficient number of statistically

independent foliage elements (see an analogue on p. 8 in

Mandelbrot, 1983). To overcome the problem of statistical

representation of the distribution of needle area within and

between the small regions occupied by coniferous shoots, we

have used the shoot as the basic structural unit of the canopy.

This was done by deriving the interception, absorption, and

scattering properties of a shoot as a function of the shoot

structure.

When compared to a single leaf, the effect of mutual

shading of needles in a shoot is to decrease the radiation

interception efficiency (G-value) and the scattering coeffi-

cient of the shoot, and to change the shape of the scattering

phase function to weight it more towards the backscattering

directions (Fig. 4). We simulated shoot scattering at different

wavelengths and derived the wavelength specific mean shoot

scattering coefficient (xsh), representing the scattering coef-

ficient of a layer of spherically oriented shoots (Fig. 3). It

was shown that xsh at a specific wavelength could be

accurately predicted from the needle scattering coefficient

xL at the same wavelength, with the help of a wavelength

independent shoot structural parameter, psh (Fig. 5). The

parameter psh—‘‘probability of interaction within the

shoot’’—depends on the geometrical structure of the shoot.

We recall that shoot absorptance (Ash) (Eq. (4)) normalized

by the needle absorptance (1�xL) corresponds to the

average number (n) of interactions between a photon and

the shoot (Eq. (5)), and that the ratio of xsh to xL equals n

multiplied by the probability of escape (1� psh). The prob-

ability of escape, further, was shown to be closely approx-

imated by the shoot shading factor j = 4STAR (Fig. 6) and

thus we have xsh/xLc nj. The relationship (Eq. (6))

between xsh and xL implies that the larger psh (smaller j),
the smaller the ratio xsh/xL. At fixed psh, the ratio xsh/xL

increases with xL, i.e. the decrease in shoot scattering from

mutual shading is relatively less at wavelengths with high

needle scattering.

Results from the shoot level simulations were applied to

show how the clumping of needles into shoots affects canopy

reflectance. The relationship of canopy bidirectional reflec-

tance factor (BRF) with LAI was studied in model canopies

built of Poisson-distributed and spherically oriented flat

leaves and shoots, respectively (Figs. 7 and 8). In the absence

of background reflectance, needle clumping decreased the

BRF of the shoot canopy as compared to the leaf canopy

with similar LAI (Fig. 7) or similar canopy interceptance

(Fig. 8). Differences in canopy BRF were relatively larger in

the red wavelength (small leaf and needle scattering;

xL= 0.1) than in NIR (large leaf and needle scattering;

xL= 0.9). In this study, we have only considered the effect

of shoot level clumping in canopies with homogeneous

higher level structure. Crown mutual shading can also have

an important role in the forest reflectance (Gerard & North,

1997). This kind of higher level clumping would presumably

pronounce further the differences between coniferous and

broad-leaved forest reflectance. The method introduced in

this paper can conveniently be integrated into more realistic

forest reflectance models, which take into account the effects

of, e.g. background reflectance, crown shape and crown

mutual shading.

To parameterize a shoot-like leaf one needs to specify the

shoot structural parameter psh and the shape of the shoot

scattering phase function (Fig. 3). The observed tight rela-

tionship between psh and STAR is convenient because data

on STARare available for many coniferous species (Cescatti

& Zorer, 2003; Palmroth, Stenberg, Smolander, Voipio, &

Smolander, 2002; Stenberg, Kangas, Smolander, & Linder,

1999; Stenberg et al., 2001; Stenberg, Smolander, Sprugel, &

Smolander, 1998). The within-shoot hot spot effect was

visible as a peak in the backscattering direction in the shoot

scattering phase function (Fig. 4) but cannot be described by

the bi-Lambertian distribution (Eq. (9)). Although this peak

was not included in the shoot-like leaf scattering phase

function, the canopy BRF simulations with shoots and

shoot-like leaves were in very good agreement (Figs. 7 and

8). However, the simulated canopy BRF was in the zenith

direction and not in the backscattering direction where the
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canopy hot spot is seen. The shoot-level backscattering

might be important for canopy backscattering.

The shoot scattering coefficient depended on shoot struc-

ture ( psh) and needle scattering coefficient (xL) (Fig. 5), but

was not sensitive to the ratio of needle transmittance (sL) to
reflectance (qL) (data not shown). The simplified assumption

that sL equalled qL mainly affected the proportions of

forward and backward scattering in the shoot scattering

phase function (Fig. 4). Changing the ratio of sL to qL
(e.g. decreasing sL for visible wavelengths) would change

the ratio of shoot forward to backward scattering in the same

direction but to a smaller degree. Although the exact shape of

the shoot scattering phase function may not have a very large

impact on the canopy reflectance, effort should be made to

measure realistic spectral values of sL and qL in different

species. Similarly, given accurate measurements of needle

specular reflectance, this component could be included in the

shoot scattering model fairly easily. Finally, to test the model,

simulated shoot scattering phase functions should be com-

pared to empirical measurements. To our knowledge such

model-based comparison has not been made, although some

investigations have involved measurements of the scattering

phase function of shoots (Nilson & Ross, 1997; Ross,

Meinander, & Sulev, 1994).

The main result of this study was the development of an

operational method by which the effect of the small-scale

clumping of needles into coniferous shoots could be incor-

porated into forest reflectance models of different types. For

this purpose, it was not considered meaningful to construct

model canopies with very complex architecture at higher

hierarchical levels, so instead we used simple Poisson-

canopies with a homogeneous macroscopic structure. Al-

though our simulations for these hypothetical canopies

cannot be meaningfully evaluated against real data, results

were in qualitative agreement with empirical observations

(Häme et al., 2001; Loechel et al., 1997; Nilson et al., 1999;

Tian et al., 2000; Zhang, Tian, Myneni, Knyazikhin, &

Woodcock, 2002). That is, it seems that shoot structure can

indeed explain large part of the different behavior of conif-

erous canopy reflectance as compared to broad-leaved can-

opies. Given relevant data on the geometrical and optical

properties of needles and shoots (for the considered species),

it would be straightforward to incorporate the approach

presented here to radiative transfer models with more real-

istic description of the macroscopic canopy structure.

Notation

b divergence angle

h polar angle

X a direction (in spherical coordinates)

xL leaf/needle scattering coefficient

xsh shoot scattering coefficient

qL leaf/needle surface reflectance

sL leaf/needle surface transmittance

/ azimuth angle

w rotation angle

D canopy depth

G G-function, see Ross (1981)

i0 canopy interceptance

LAI leaf area index

n mean number of interactions

psh shoot structural parameter

SSA shoot silhouette area

SSA spherical average of SSA

STAR silhouette to total area ratio

STAR spherical average of STAR

uL leaf area density
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Abstract

Simulations of the different components of the spectral radiation budget of structurally simple leaf and shoot canopies with varying canopy

leaf area index (LAI) were performed. The aims were (1) to test a proposed parameterization of the budget using two spectrally invariant

canopy structural parameters ( p and pt) governing canopy absorption and transmittance, respectively, and (2) to incorporate the effect of

within-shoot scattering in the parameterization for shoot canopies. Results showed that canopy spectral absorption and scattering were well

described by a single parameter, the canopy p value or drecollision probabilityT, which was closely related to LAI. The relationship between p
and LAI was however different in leaf and shoot canopy: e.g., at the same LAI the recollision probability was larger in the shoot canopy. It

was shown that the p value of the shoot canopy could be decomposed into the p value of an individual shoot ( psh) and the p value of the leaf

canopy with the same effective LAI (LAIe). The canopy p value allows calculation of canopy absorption and scattering at any given

wavelength from the leaf (or needle) scattering coefficient at the same wavelength. To calculate canopy reflectance, separation of the

downward and upward scattered parts is needed in addition. The proposed parameter pt worked rather well in the leaf canopy at moderate

values of LAI, but not in the coniferous shoot canopy nor at high values of LAI. However, the simulated fraction of upward scattered radiation

increased in a straightforward manner with LAI, and was not particularly sensitive to the leaf (or needle) scattering coefficient. Judged by this

dsmoothT behavior, the existence of another kind of simple parameterization for this separation remains an interesting possibility.

D 2004 Elsevier Inc. All rights reserved.

Keywords: LAI; Vegetation canopy; Parameterization; Spectra; Radiative transfer

1. Introduction

The basic premises for optical remote sensing of

vegetation are that the solar radiation received by a remotely

located sensor (e.g., on a satellite) upon interaction with the

vegetation canopy carries in it the signature of the canopy,

and that this spectral signature can be deciphered to obtain

the information of interest (Goel, 1988, 1989). Physically

based methods for the assessment or monitoring of

vegetation parameters (e.g., structural and biophysical

characteristics) have progressively become more and more

attractive since they are better suited for many current large-

scale applications than the traditionally used statistical

(empirical) techniques (Knyazikhin et al., 1998b). The

parameters of interest vary with the area of application

(production ecology, global change monitoring, climate

models, etc.); however, for all applications good models of

the shortwave radiation budget of vegetation canopies are

needed to interpret the remotely sensed signal. The short-

wave dradiation budgetT describes how the fractions of

radiation absorbed by or scattered out from the canopy to

the underlying soil and understorey or back to space

(canopy reflectance or albedo) are related to the structural

and optical properties of canopy and background.

Given a detailed description of a single canopy, the

radiation budget can be calculated using Monte Carlo

simulation models (Disney et al., 2000). However, the

simulation results are case specific and difficult to generalize

0034-4257/$ - see front matter D 2004 Elsevier Inc. All rights reserved.
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in lack of knowledge on which of the various canopy

characteristics used as input are the most important. To be

more generally and operationally applicable, models should

build upon a canopy representation with only a small set of

basic parameters which govern the radiation budget with

sufficient accuracy.

Knyazikhin et al. (1998a,b) analyzed the multiplication

factor eigenvalues of the radiative transfer equation for

vegetation canopies to find such set of parameters (see Bell

& Glasstone, 1970, Section 1.5e). They proposed that, to a

good approximation, the amount of radiation absorbed by a

canopy should depend only on the wavelength and a canopy

structural parameter ( p), which is wavelength independent.

The parameter p can be interpreted as the probability that a

photon scattered from a leaf in the canopy will interact

within the canopy again—the brecollision probabilityQ.
Knowing the p value of a canopy, the scattering coefficient

of the canopy at any wavelength can be predicted from the

leaf scattering coefficient at the same wavelength. Knyazi-

khin et al. (1998a,b) also introduced a similar parameter ( pt)

relating canopy transmittances at two different wavelengths

to the leaf scattering coefficients at these wavelengths.

Given the absorption ( p value) and transmission ( pt value),

total reflectance (the upward scattered part of the incident

radiation) is also known (because they all sum up to one).

The eigenvalue theory thus states that the radiation budget

of a vegetation canopy can be parameterized using only two

parameters ( p and pt) which, however, depend on canopy

structure in a rather complex manner (Panferov et al., 2001;

Shabanov et al., 2003; Wang et al., 2003). Although both

parameters are related to the canopy leaf area index (LAI),

the relationships between p, pt and LAI in addition may

vary with a set of other parameters, including leaf

orientation and spatial distribution, and the degree of

grouping of the leaves.

In this paper, we study the behavior of the spectral

radiation budget of structurally simple model canopies and

demonstrate the effect within-shoot scattering has on the

budget. We first estimate the canopy spectral scattering

coefficient, defined as the ratio of photons exiting the

canopy to those initially hitting leaves or needles in the

canopy, for simulated canopies of varying leaf area index

(LAI) and composed of randomly distributed single leaves

(bleaf canopyQ) or shoots (bshoot canopyQ). This is done by

photon tracing (Jensen, 2001), where photons of specified

wavelength fired into the canopy are followed until they are

absorbed or exit the canopy. The structural parameter ( p) is

estimated by recording the number of interactions between

the photons and the canopy.

The shoot canopy differs from the leaf canopy in that a

photon hitting a needle on a shoot may undergo several

interactions within the shoot before being absorbed or

scattered out from the shoot. In a previous paper (Smolander

& Stenberg, 2003), we introduced the recollision probability

within a coniferous shoot ( psh) and showed that the shoot

scattering coefficient could be predicted from psh using the

same relationship as the one proposed to hold true at the

canopy level. The result offers a means to account for the

within-shoot scattering in models developed primarily for

broadleaved canopies. Here, we show that in the shoot

canopy, the canopy level recollision probability can be

decomposed into psh and the p value of a leaf canopy with

the same beffective LAIQ. In two canopies with the same

effective LAI, the collided and uncollided part of incoming

photons (canopy interceptance and zero order transmittance)

are the same for both canopies. We derive the relationship

between p and canopy LAI in the two model canopies,

allowing the total amount of scattered (or absorbed)

radiation to be calculated as a function of LAI. Finally,

the proposed pt-method of separating the scattered radiation

into downward and upward scattered (i.e. reflected) parts as

well as the two-stream model by Ross (1981) is evaluated

using the simulation results.

2. Theoretical background and aim of study

2.1. Canopy absorption and scattering

We use the following terminology to separate the fates of

photons arriving in a vegetation canopy, assumed to be

bounded underneath by a black surface. The portion of

photons which do not interact with leaves at all but are

transmitted directly to the ground through gaps in the

canopy is called the zero order canopy transmittance (t0).

Canopy interceptance (i0) correspondingly denotes the

portion of incoming photons hitting a leaf, and thus we

have i0+t0=1. Notice that i0 and t0 depend on the incoming

direction of the photons but do not depend on their

wavelength (k). Part of i0 will be absorbed by the leaves

in the canopy, this wavelength dependent part is the canopy

spectral absorption (a(k)), while another part (s(k)) is

scattered out from the canopy (i0=a+s). Note that, at this

point, s contains both the upward (to the sky) and

downward (to the ground) scattered photons. The canopy

radiation budget can now be written as:

a kð Þ þ s kð Þ þ t0 ¼ 1 ð1Þ
Panferov et al. (2001) introduced the canopy structural

parameter ( p), which can be interpreted as the (mean)

probability by which a photon scattered from a leaf in the

canopy will interact within the canopy again. We call this

the recollision probability. On the assumption that the

recollision probability remains constant in successive

interactions, canopy absorption (a) and scattering (s),

normalized by canopy interceptance (i0, the part of

incoming photons not transmitted directly to the ground),

are then obtained as:

a kð Þ=i0 ¼ ð1� xL kð ÞÞ þ xL kð Þpð1� xL kð ÞÞ

þ xL kð Þ2p2ð1� xL kð ÞÞ þ N ¼ 1� xL kð Þ
1� pxL kð Þ ð2Þ
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and

s kð Þ=i0 ¼ xL kð Þ � pxL kð Þ
1� pxL kð Þ ð3Þ

where xL denotes the leaf scattering coefficient (leaf

reflectance plus transmittance). Schematically, the fate of

the incoming photons can be thought to follow the four-state

Markov chain model presented in Fig. 1.

The ratios a(k)/i0 and s(k)/i0 (Eqs. (2) and (3)) represent

the portions of photons absorbed and scattered out from the

canopy from those initially hitting the canopy, i.e. they can

be interpreted as the absorption and scattering coefficients

of the canopy. The average number of interactions (n)

between a photon and (leaves in) the canopy, furthermore, is

obtained as the ratio of canopy to leaf absorption

coefficients, that is:

n kð Þ ¼ 1

1� pxL kð Þ ð4Þ

Eq. (4) describes the simple relationship between the

recollision probability ( p) and the degree of multiple

scattering within the canopy.

In our previous paper, the p value of an individual

coniferous shoot ( psh) was introduced and was successfully

used to describe the absorption and scattering coefficients of

the shoot by means of Eqs. (2) and (3) with p replaced by

psh and with xL denoting the needle scattering coefficient

(Smolander & Stenberg, 2003, Eqs. (4) and (6), p. 366). The

shoot scattering coefficient (xsh) is smaller than that of its

needles (xL) (except at completely absorbing or completely

scattering wavelengths) but the relationship is nonlinear so

that the ratio of xsh to xL increases with xL and decreases

with increasing psh. It was shown, also, that close to perfect

linear relationship existed between psh and the spherically

averaged ratio of shoot silhouette area to total needle area

STAR
P� �

, allowing psh to be calculated as 1� 4STAR
P

. In this

study, we test the relationships (Eqs. (2) and (3)) at the

canopy level using simulated model canopies composed of

randomly distributed and spherically oriented leaves and

shoots, respectively. The canopy p values are denoted pLC
(leaf canopy) and pCC (coniferous canopy). Further, we

derive the relationship between p and canopy leaf area index

(LAI) and test the hypothesis that pCC can be decomposed

into psh and the pLC of a leaf canopy with the same effective

leaf area index (LAIe) as:

pCC ¼ psh þ 1� pshð ÞpLC LAI eð Þ ð5Þ
In the way presented above (Eqs. (1)–(5)), we can relate

the canopy spectral absorption and scattering to a single

parameter, the canopy p value, which is a function of LAI.

2.2. Upward and downward scattering

Canopy scattering is divided into upward and downward

scattering, of which the former component is of special

interest here being the one registered by remote sensing

instruments. The upward scattered part of s is called canopy

spectral reflectance (r(k)). Canopy spectral transmittance

(t(k)), in turn, is composed of the downward scattered part

of s (ts(k)) plus the (wavelength independent) zero order

transmittance (t0). We have then:

a kð Þ þ s kð Þ þ t0 ¼ a kð Þ þ r kð Þ þ ts kð Þ þ t0 ¼ 1 ð6Þ
When leaves have nonzero absorption, that is xLb1, it is

easy to decompose the total absorption (a) into first order

(a1) and higher order (as) absorption: a=a1+as. The photons

that are absorbed at the first interaction constitute a1. The

total radiation budget is then:

a1 kð Þ þ as kð Þ þ r kð Þ þ ts kð Þ þ t0 ¼ 1 ð7Þ
and, actually, a1 is easy to calculate: a1=(1�t0)(1�xL(k)).

Panferov et al. (2001) defined the other structural canopy

parameter, pt, by a simple algebraic combination of leaf and

canopy spectral transmittances which, based on both

empirical and theoretical analyses, was proposed to

eliminate the dependency on wavelength. Using the

parameter pt, canopy transmittance at any given wavelength

(k) is related to that at a reference wavelength (kref) by the

equation:

t kð Þ ¼ tðkref Þ 1� ptxLðkref Þ
1� ptxL kð Þ ð8Þ

Interpretation of the parameter pt is not as straightfor-

ward as that for the parameter p, however, using xL(kref)=0,
Shabanov et al. (2003, Eq. (3), p. 413) arrived at the

relationship:

t kð Þ � t0

t kð Þ ¼ ts kð Þ
t kð Þ ¼ ptxL kð Þ ð9Þ

according to which the product ptxL is equal to the

portion of collided radiation (ts) from the total canopy

transmittance (t).

Fig. 1. An illustration of the four-state Markov chain model for canopy

absorption and scattering. The photon, coming from the sky, can go through

the canopy without interactions with probability t0, and end up in T0

(assuming black soil and thus no further scattering). With probability

i0=1�t0 it will interact with the canopy (state I). With probability 1�x it

will be absorbed (state A). With probability xp it will be scattered by the

phytoelement and then hit the canopy again. With probability x(1�p) the

photon will be scattered by the phytoelement and not hit the canopy again,

it will escape (state E).
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Using Eqs. (3) and (9), canopy scattering (s) and its

division into upward (r) and downward components (ts) can

be solved as a function of the parameters p and pt:

r kð Þ
s kð Þ ¼

s kð Þ � ts kð Þ
s kð Þ

¼ 1� t0ptxL kð Þð1� pxL kð ÞÞ
i0ðxL kð Þ � pxL kð ÞÞð1� ptxL kð ÞÞ ð10Þ

In this paper, the performance of Shabanov’s method of

separating the total canopy scattering into upward and

downward scattered components is tested. We also test the

applicability of the model by Ross (1981, Section II.6.4),

derived for uniform leaf canopies, on our shoot canopies by

incorporating a correction for within-shoot scattering. In the

two-component model by Ross, the upward and downward

components of radiation inside a canopy are modeled by a

pair of differential equations, which in the case of a

homogeneous Poisson canopy with spherically oriented

Lambertian leaves, yields a good approximate analytical

solution.

2.3. Simulation method

Simulations of the different components of the radiation

budget (Eq. (7)) were performed for the model canopies

with different values of LAI. The aim was to test the

proposed parameterization of the radiation budget (Eqs. (1)–

(10)), which can be solved knowing the two canopy

structural parameters ( p and pt) together with the leaf

(needle) scattering coefficient (xL) and, in case of the shoot

canopy, the parameter psh related to shoot structure. The

canopies were composed of randomly distributed and

spherically oriented foliage elements (leaves or shoots),

and the underlying soil was assumed black. In the

simulations, the incident angle of incoming photons was

set to 458. In addition, the effect of differing incoming

angles was studied separately.

The simulation algorithm is as described in Smolander and

Stenberg (2003). In short, a number of photons at different

wavelengths are fired into the canopy and every photon is

followed by photon tracing (a computer graphics method

similar to ray tracing, but following a photon in the direction

it actually moves; see Jensen, 2001) until it is absorbed by a

leaf or a shoot, or exits the canopy. The lengths of the free

paths for photons are taken from the exponential distribution,

and successive paths are treated independently. (Thus, the

model does not include the backscattering hot spot effect.)

Zero order canopy transmittance (t0) and interceptance (i0) in

the model canopies are given by:

t0 ¼ exp � GLAI=coshð Þ ð11aÞ
and

i0 ¼ 1� exp � GLAI=coshð Þ ð11bÞ
where LAI denotes the leaf area index, h is the angle of

incidence for photons (solar zenith angle), and G is the

extinction coefficient, taking the value 0.5 in the leaf canopy.

In the shoot canopy, the G value corresponds to 2STAR
P

,

where STAR
P

is the spherically averaged ratio of shoot

silhouette area to total needle area (Oker-Blom & Smolander,

1988). In this study, we used the values STAR
P ¼ 0:133 and

psh ¼ 1� 4STAR
P ¼ 0:47 representative of a Scots pine

(Pinus sylvestris L.) shoot (Smolander & Stenberg, 2003).

The value used here for STAR
P

implies that the LAI of the

shoot canopy must be 88% higher (0.5/0.266=1.88) than the

LAI of the leaf canopy to get similar t0 and i0 (or that, for

similar values of LAI, the effective LAI (LAIe) of the shoot

canopy is 47% smaller (0.266/0.5=0.53) than that of the leaf

canopy).

3. Results

The basic spectral behavior of the canopy radiation

budget is presented in Fig. 2. The most obvious difference

between the leaf canopy (Fig. 2A) and the shoot canopy

Fig. 2. Schematic presentation of the different components of radiation as a function of the leaf (needle) scattering coefficient for the two model canopies ((A)

leaf canopy, (B) shoot canopy) with LAI=3.
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(Fig. 2B) of the same LAI (here LAI=3) is that because the

shoot canopy has a smaller LAIe, a larger part of the

incoming photons goes straight through (larger t0). This of

course causes the other components to be, respectively,

smaller for the shoot canopy. Another difference is that, in

the leaf canopy, the total absorption (a=a1+as) and

scattering (s=r+ts) respond more linearly to the element

scattering coefficient than in the shoot canopy.

At the same LAIe, the zero order transmittance (t0) is

equal for the two canopies but the scattered part of i0 is

smaller in the shoot canopy except at completely absorbing

or completely scattering wavelengths (Fig. 3). At all other

wavelengths the shoot canopy absorbs more than a leaf

canopy with the same LAIe. In both the leaf and the shoot

canopy, the fraction of scattered photons as a function of xL

(plotted in Fig. 3) shows good agreement with Eq. (3), but

with different p values.

Estimated p values of the leaf canopy ( pLC) and the

shoot canopy ( pCC) for different values of LAI are shown in

Fig. 4A and B. The parameter p was estimated in two

different ways: by fitting Eq. (3) to the simulated canopy

and leaf scattering coefficients for different xL (bfitted pQ,
shown in Fig. 4), and independently, by calculating the

recollision probability by directly counting the interaction

events in a single photon tracing simulation with xL=1

(bdirect pQ). As shown in Fig. 4A and B, there is close to

perfect agreement (one to one relationship) between the

fitted and directly counted values of p. This indicates that to

estimate the canopy p value one needs only to perform the

photon tracing simulations with one wavelength, instead of

performing them for a number of wavelengths and then

applying a curve fitting procedure to the data. In Fig. 4C, the

value of pCC calculated using the decomposition formula

(Eq. (5)) is compared to the fitted pCC, showing good

agreement.

Fig. 3. The non-absorbed component, 1�a=t0+ts+r (see Fig. 2) of the

canopy radiation budget as a function of the leaf (needle) scattering

coefficient. The black dots denote values obtained from simulations, and

the curves for the shoot canopies (solid lines) and leaf canopies (broken

lines) were fitted using Eq. (3). Values of LAI for the shoot canopies were

LAI=1 (uppermost curve), 2, 4, and 8 (lowest curve). The leaf canopy LAI

values were chosen so, that the effective LAI (LAIe) was the same for each

pair of leaf and shoot canopies.

Fig. 4. (A, B) Comparison of p values obtained by fitting Eq. (3) to simulations performed for different xL (see Fig. 3), and by direct counting of the photon

interaction events for simulations with xL=1 ((A) leaf canopy, (B) shoot canopy). (C) Shoot canopy, pCC calculated with the decomposition formula (Eq. (5))

plotted against the fitted values of pCC. The dots represent LAI=1, 2, 3, . . . , 8.

Fig. 5. Parameter p ( pLC and pCC) for the leaf and shoot canopy as a

function of LAI. Black dots denote the p values solved by Eq. (2) using the

simulated absorption data (see Fig. 3). The curve fitted for the leaf canopy

(broken curve) is pLC=pLC,max(1�exp(�kLAIb)), with pLC,max=0.88, k=0.7

and b=0.75. The curve for the shoot canopy (solid curve) was produced

independently using the decomposition formula (Eq. (5)).
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Fig. 5 presents (i) how the leaf canopy p value ( pLC)

changes as a function of LAI, and (ii) how the dependence

between LAI and the p value of the shoot canopy ( pCC) can

be predicted from psh and pLC using the decomposition

formula (Eq. (5)). The parameter pLC as a function of LAI

was well approximated by the relationship pLC=

pLCmax(1�exp(�kLAIb)), with pLCmax=0.88, k=0.7 and

b=0.75. The p value of the shoot canopy ( pCC) in turn

was very well predicted by the decomposition formula

evaluated using pLC of the leaf canopy with similar LAIe
and psh=0.47. This confirms our hypothesis that in the shoot

canopy the recollision probability can be decomposed into

within-shoot and between-shoot recollision probabilities.

Simulations made for different directions (zenith angles)

of incoming photons showed that the zenith angle, because

it changes the distribution of the points of first interaction

within the canopy, has some effect on pLC (Fig. 6).

However, for zenith angles less than ca. 508, the variation

in pLC was less than 1.2%. This means that the p value is

practically insensitive to the solar zenith angle in the range

of solar angles commonly used in satellite remote sensing.

The canopy p value provides the key for calculating

canopy absorption and scattering, respectively, but not for

separating between the upward (r) and downward (ts)

components of the scattered radiation (s). For this purpose,

we tested the applicability of the model by Ross (1981) and

the parameterization proposed by Shabanov et al. (2003).

In the two-component model by Ross, the upward and

downward components of radiation inside a canopy are

modeled by a pair of differential equations, shown to give a

good approximate analytical solution in the case of a

homogeneous Poisson canopy with spherically oriented

Lambertian leaves, i.e. corresponding to the leaf canopy in

this study. In Fig. 7, simulated values of r and ts in the shoot

canopy with LAI=4 are compared to results obtained by the

model of Ross (1981). When LAIe (=2.13) was used as an

input value for the model (instead of the true LAI), the

simple components, zero-order transmittance (t0) and

interceptance (i0), were obtained correctly but the canopy

scattering and thus its upward and downward components (r

and ts) were overestimated by the model (Fig. 7, broken

lines). However, when the correction for within-shoot

scattering was included in the model by replacing the

needle scattering coefficient (transmittance and reflectance)

by that of the shoot (see Smolander & Stenberg, 2003), the

curves shifted and the model agreed well with the

simulations (Fig. 7, solid line).

Simulated values of the ratio of upward to total

scattering, r/(r+ts) for the leaf and shoot canopy, as a

function of the leaf (needle) scattering coefficient (xL), are

presented in Fig. 8, and compared to results obtained by the

models of Ross (1981) and Shabanov et al. (2003). The

fraction of upward scattered radiation increased with LAI:

for LAI=2 (the lowest curve), approximately 60% of the

scattered photons escaped upwards in both the shoot and the

leaf canopy, and for LAI=8, the upwards escaping fraction

was more than 90% in the leaf canopy (Fig. 8A) and about

80% in the shoot canopy (Fig. 8C). (Notice that values of

the effective LAI are smaller in the shoot canopy.) A slight

decrease in r/(r+ts) with increasing xL can be observed.

This pattern was correctly mimicked by Ross’ model, which

generally showed good agreement with the simulations both

in the leaf canopy and the shoot canopy (when the shoot

level correction was applied). Shabanov’s parameterization

worked rather well for the leaf canopy at moderate values of
Fig. 6. The effect of solar zenith angle on pLC for LAI=1 (lowest curve), 2,

4, and 8 (highest curve). Black dots denote simulated values.

Fig. 7. Demonstration of the effect of including within-shoot scattering in

the leaf-based model by Ross (1981). Black dots denote the reflected (r) and

transmitted scattered radiation (ts) for the shoot canopy with LAI=4. When

the model was used with the effective LAI (LAIe=2.13) as input, zero order

transmittance (t0) was obtained correctly (not shown here) but components r

and ts were overestimated (broken curves). When, additionally, the element

scattering coefficient was corrected for by including within-shoot scattering,

as suggested by Smolander and Stenberg (2003), the curves shifted and the

model fitted well to the simulation data (solid curves).
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LAI (LAI=2 and 4) but not so well for the shoot canopy or

for high values of LAI. The curves were produced by Eq.

(10), using fixed (i.e. the simulated) values of s and t0 and

the value for pt giving the best fit to the simulations. Despite

this fitting procedure, poor results for the shoot canopy were

obtained due to the different shapes of the simulated and

calculated curves. The shape of the curve described by Eq.

(10) depends in a complex manner on the relation between p

and pt, which explains the different outlook of the curves in

Fig. 8A and C. At similar LAI, the shoot canopy has larger p

value but smaller pt value.

To demonstrate the relevance of the shoot-level correction

for the interpretation of remote sensing data, we used Ross’

(1981) model, with shoot-level correction, to calculate

canopy hemispherical reflectance in red and near-infrared

(NIR) wavelengths. The leaf (needle) scattering coefficients

were set to xL=0.1 for red, and xL=0.9 for NIR, and the

canopies were assumed to be bounded underneath by two

different soils with reflectance values of 0.05 and 0.15.

Trajectories of leaf and shoot canopy hemispherical reflec-

tance as functions of increasing LAI in the red–NIR plane are

presented in Fig. 9. The shoot canopy spectral reflectances

change in a different manner and more slowly with increased

LAI than those of the leaf canopy, and thus the shoot canopy

trajectories occupy a different space in the red–NIR plane

than the leaf canopies. Also, an identical signal can result

from different canopy and soil combinations. (Note that the

hemispherical reflectance values of Fig. 9 are not directly

Fig. 8. Simulated values (black dots) of the upward fraction of the total scattered radiation r/(r+ts) for the leaf and shoot canopies with LAI=2 (lowest dot-line),

4, 6, and 8 (highest dot-line). (A, B) Leaf canopy. (C, D) Shoot canopy. The curves present the results obtained by the p t-method described by Shabanov et al.

(2003) (A and C) and the two-stream model by Ross (1981) (B and D).

Fig. 9. Trajectories of the hemispherical reflectances of homogeneous leaf

canopies (broken curve) and shoot canopies (solid curve) in the red–NIR

plane. The trajectories start from the 1:1 soil line at two different soil

reflectances: 0.05 and 0.15 (soil reflectance assumed to be the same in red

and NIR). A trajectory crossing is indicated by an arrow, where leaf and

shoot canopies with different LAI and soil reflectance produce an identical

signal in the red–NIR plane: leaf canopy LAI=1.3 and soil reflectance 0.05;

shoot canopy LAI=2.7 and soil reflectance 0.15.
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comparable to the directional values measured by satellites,

but the difference between leaf and shoot canopies should

remain approximately the same.)

4. Discussion

The canopy p value holds promising potential to be the

single parameter needed to describe the canopy spectral

absorption. The results presented here (Figs. 3 and 4) show

that the approach works well in the case of simple

homogeneous canopies. Based on our previous simulation

study (Smolander & Stenberg, 2003), a similar approach

works well in describing the spectral absorption of a

coniferous shoot. Since also the combination of shoot-level

and canopy-level recollision probabilities (Eq. (5), Figs. 4C

and 5) worked well, it seems possible that also more

complicated canopy structures could be handled in a similar

manner. An important part of the usefulness of the p value is

its stability under different solar zenith angles (Fig. 6).

The inclusion of the within-shoot scattering, as described

by the shoot level p value ( psh), seems to be crucial for

realistic modeling of the radiation budget in a coniferous

canopy. The effect of the within-shoot scattering is to

increase canopy absorption when compared to a broad-

leaved canopy with the same effective LAI (and thus equal

zero order transmittance, t0). With increased absorption, the

scattered components (r and ts) decrease in such a way that

in a coniferous canopy they respond more slowly to the

increased leaf/needle scattering coefficient than in a broad-

leaved canopy. Fig. 7 demonstrates this effect: When the

model of Ross (1981) was applied to the shoot canopy,

parameterized with effective LAI to get the direct compo-

nent right, the scattered components were too large; but

when the element scattering coefficient was corrected using

the model by Smolander and Stenberg (2003), the curves

bshiftedQ and matched the simulations well. Application of

the model to demonstrate the relevance of the shoot-level

correction for the interpretation of remote sensing data (Fig.

9) showed that the inclusion of within-shoot scattering

changes the spectral behavior of coniferous forests, as

compared to broadleaved forests, in a manner conforming to

empirical observations (Tian et al., 2000).

The proposed simple parameterization of the canopy

radiation budget included two parameters or bspectral
invariantsQ, p and pt. The canopy p value can intuitively

be understood to govern canopy absorption through its

definition as the brecollision probabilityQ, i.e. the probability
that a photon scattered from a leaf element will interact in

the canopy again. As noted above, the parameter p

performed well in estimating the absorption of both

homogeneous leaf canopies and homogeneous shoot cano-

pies, and it is reasonable to believe that it should work also

in canopies of still more complicated structure.

The other invariant, pt, controls the part of the scattered

radiation that exits the canopy downwards. No intuitively

simple interpretation such as given for the p value exists, or

has yet been found for pt, which can be defined as dthe
eigenvalue (normalized by leaf albedo) of the linear operator

that assigns downward radiances at the canopy bottom to

incoming radiationT (Shabanov et al., 2003). For the

simulated leaf canopies, the parameter pt performed rela-

tively well, although the model of Ross (1981) performed

slightly better (Fig. 8A and B). The situation was different for

shoot canopies, where the pt-based approach predicted that

the upwards portion of scattered radiation should increase

with increasing needle scattering coefficient, when it was

actually decreasing (Fig. 8C). Ross’ model, when corrected

for effective LAI and for within-shoot scattering, on the other

hand performed quite well in explaining the upwards portion

of the scattered radiation (Fig. 8D).

It should be noted that Ross’ model is formulated only

for simple Poisson canopies, and thus is not directly

applicable to canopies with nonuniform higher level

structure. However, since the shoot-level correction of

Smolander and Stenberg (2003) was able to extend the

applicability of the model from Poisson leaf-canopies to

Poisson shoot-canopies, it seems possible that a similar

correction could work also for models with nonuniform

higher level structure. The dsmoothT behavior of the

simulated fraction of upward scattered radiation with

increasing LAI (Fig. 8) moreover suggests that the

parameterization approach for this separation remains an

interesting possibility.

5. Conclusions

In short, results from this study confirmed that the

spectral absorption and scattering of structurally simple

uniform canopies can indeed be well described by a single

parameter, the canopy p value, which furthermore showed a

close relationship with the LAI but insensitivity to the solar

zenith angle. Shabanov et al. (2003) have proposed a similar

parameter for separating the upward and downward parts of

the scattered radiation. Unfortunately, based on the model

simulations, this parameter does not seem to work when the

shoot-level complexity is added to the canopy structure. The

existence of another kind of simple parameterization for this

separation however appears as a realistic assumption judged

by the straightforward dependence of the ratio of upward to

total scattered radiation on LAI, and its insensitivity to the

leaf (needle) scattering coefficient. Another matter, not

treated in this study, is what controls the directional

distribution of the upward scattered (i.e. reflected) radiation.

Ultimately, the goal would be a parameterization including

tools also for calculating the bidirectional reflectance factor

(BRF) of the canopy.

Many satellite instruments measure canopy reflectance

from nadir only, and even though there are instruments that

produce multidirectional data that can be used to estimate

the total upwards component (see Zhang et al., 2002), one
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would usually like to work with a model that accepts one-

directional satellite data as input. Since the directional

distribution of reflected radiation is not uniform, the satellite

nadir readings do not as such contain enough information to

estimate the total upwards scattered portion. Or, the other

way around, nondirectional models for canopy radiation

budget are not as such sufficient for use in satellite image

interpretation. This issue is further complicated by the effect

of crown shape on the directional reflectance distribution

(Gerard & North, 1997; Rautiainen et al., 2004).

We think that simple parameterizations, when possible,

will help to conceptualize and summarize the behavior of

more complicated radiation budget models. Theymay also be

useful when one tries to invert the more complicated models

for operational satellite image interpretation purposes.
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